首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  国内免费   11篇
  完全免费   101篇
  自动化技术   252篇
  2017年   8篇
  2016年   7篇
  2015年   20篇
  2014年   18篇
  2013年   20篇
  2012年   38篇
  2011年   44篇
  2010年   26篇
  2009年   23篇
  2008年   18篇
  2007年   14篇
  2006年   8篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
排序方式: 共有252条查询结果,搜索用时 62 毫秒
1.
基于Bayes潜在语义模型的半监督Web挖掘   总被引:24,自引:0,他引:24       下载免费PDF全文
宫秀军  史忠植 《软件学报》2002,13(8):1508-1514
随着互联网信息的增长,Web挖掘已经成为数据挖掘研究的热点之一.网页分类是通过学习大量的带有类别标注的训练样本来预测网页的类别,人工标注这些训练样本是相当繁琐的.网页聚类通过一定的相似性度量,将相关网页归并到一类.然而传统的聚类算法对解空间的搜索带有盲目性和缺乏语义特征.提出了两阶段的半监督文本学习策略.第1阶段,利用贝叶斯潜在语义模型来标注含有潜在类别主题词变量的网页的类别;第2阶段,利用简单贝叶斯模型,在第1阶段类别标注的基础上,通过EM(expectation maximization)算法对不含有潜在类别主题词变量的文档作类别标注.实验结果表明,该算法具有很高的精度和召回率.  相似文献
2.
基于分层高斯混合模型的半监督学习算法   总被引:10,自引:0,他引:10  
提出了一种基于分层高斯混合模型的半监督学习算法,半监督学习算法的学习样本包括已标记类别样本和未标记类别学习样本。如用高斯混合模型拟合每个类别已标记学习样本的概率分布,进而用高斯数为类别数的分层高斯混合模型拟合全部(已标记和未标记)学习样本的分布,则形成为一个基于分层的高斯混合模型的半监督学习问题。基于EM算法,首先利用每个类别已标记样本学习高斯混合模型,然后以该模型参数和已标记样本的频率分布作为分层高斯混合模型参数的初值,给出了基于分层高斯混合模型的半监督学习算法,以银行票据印刷体数字识别做实验,实验结果表明,本算法能够获得较好的效果。  相似文献
3.
半监督典型相关分析算法   总被引:10,自引:1,他引:9       下载免费PDF全文
彭 岩  张道强 《软件学报》2008,19(11):2822-2832
在典型相关分析算法(canonical correlation analysis,简称CCA)的基础上,通过引入以成对约束形式给出的监督信息,提出了一种半监督的典型相关分析算法(Semi-CCA).在此算法中,除了考虑大量的无标号样本以外,还考虑成对约束信息,即已知两样本属于同一类(正约束)或不属于同一类(负约束),同时验证了两者的相对重要性.在人工数据集、多特征手写体数据集和人脸数据集(Yale和AR)上的实验结果表明,Semi-CCA能够有效地利用少量的监督信息采提高分类性能.  相似文献
4.
结合限制的分隔模型及K-Means算法   总被引:7,自引:0,他引:7       下载免费PDF全文
何振峰  熊范纶 《软件学报》2005,16(5):799-809
将数据对象间的关联限制与K-means算法结合可以取得较好的效果,但由于划分是由K个中心决定的,每一类仅由一个中心决定,分隔的表示方法限制了算法效果的进一步提高.基于数据对象间的两类限制,定义了数据对象和集合间的两类关联,以及集合间的3类关联,在此基础上给出了结合限制的分隔模型.在模型中,基于集合间的正关联,多个子集中心可以用来表示同一类,使划分的表示可以更为灵活、精细.基于此模型,给出了相应的算法CKS(constrained K-meanswith subsets)来生成结合限制的分隔.对3个UCI数据集的实验结果显示:在准确率及健壮性上,CKS显著优于另一个结合关联限制的K-means类算法COP-K-means,与另一个代表性的算法CCL相比,也有相当优势;在时间代价上,CKS也有一定优势.  相似文献
5.
基于局部与全局保持的半监督维数约减方法   总被引:7,自引:1,他引:6       下载免费PDF全文
韦 佳  彭 宏 《软件学报》2008,19(11):2833-2842
在很多机器学习和数据挖掘任务中,仅仅利用边信息(side-information)并不能得到最好的半监督学习(semi-supervised learning)效果,因此,提出一种基于局部与全局保持的半监督维数约减(local and global preserving based semi-supervised dimensionality reduction,简称LGSSDR)方法.该算法不仅能够保持正、负约束信息而且能够保持数据集所在低维流形的全局以及局部信息.另外,该算法能够计算出变换矩阵并较容易地处理未见样本.实验结果验证了该算法的有效性.  相似文献
6.
半监督降维方法的实验比较   总被引:5,自引:0,他引:5       下载免费PDF全文
半监督学习是近年来机器学习领域中的研究热点之一,已从最初的半监督分类和半监督聚类拓展到半监督回归和半监督降维等领域.目前,有关半监督分类、聚类和回归等方面的工作已经有了很好的综述,如Zhu的半监督学习文献综述.降维一直是机器学习和模式识别等相关领域的重要研究课题,近年来出现了很多将半监督思想用于降维,即半监督降维方面的工作.有鉴于此,试图对目前已有的一些半监督降维方法进行综述,然后在大量的标准数据集上对这些方法的性能进行实验比较,并据此得出了一些经验性的启示.  相似文献
7.
基于主动学习和半监督学习的多类图像分类   总被引:4,自引:0,他引:4       下载免费PDF全文
陈荣  曹永锋  孙洪 《自动化学报》2011,37(8):954-962
多数图像分类算法需要大量的训练样本对分类器模型进行训练.在实际应用中, 对大量样本进行标注非常枯燥、耗时.对于一些特殊图像,如合成孔径雷达 (Synthetic aperture radar, SAR)图像, 对其内容判读非常困难,因此能够获得的标注样本数量非常有限. 本文将基于最优标号和次优标号(Best vs second-best, BvSB)的主动学习和带约束条件的自学习(Constrained self-training, CST) 引入到基于支持向量机(Support vector machine, SVM)分类器的图像分类算法中,提出了一种新的图像分类方法.通过BvSB 主动学习去挖掘那些对当前分类器模型最有价值的样本进行人工标注,并借助CST半 监督学习进一步利用样本集中大量的未标注样本,使得在花费较小标注代价情况下, 能够获得良好的分类性能.将新方法与随机样本选择、基于熵的不确定性采样主动学 习算法以及BvSB主动学习方法进行了性能比较.对3个光学图像集及1个SAR图像集分类 问题的实验结果显示,新方法能够有效地减少分类器训练时所需的人工标注样本的数 量,并获得较高的准确率和较好的鲁棒性.  相似文献
8.
基于图的半监督关系抽取   总被引:4,自引:1,他引:3       下载免费PDF全文
陈锦秀  姬东鸿 《软件学报》2008,19(11):2843-2852
提出利用基于图的半监督学习算法,即标注传递算法,指导计算机从非结构化的文本中自动识别出实体之间的关系.该方法首先利用图策略来建立关系抽取的模型.在这个图模型中,各个有标签和未标签的样本被表示成图上的各个节点,而样本间的距离则作为图上各边的权重.然后,关系抽取的任务就转化成在这个图上估计出一个满足全局一致性假设的标注函数通过对ACE(automatic content extraction)语料库的评测,结果显示,当只有少量的标签样本时,采用该标注传递的方法可以获得比基于SVM(support vector machine)的有监督关系抽取更好的性能,同时也明显优于基于Bootstrapping的半监督关系抽取的方法.  相似文献
9.
Evolutionary semi-supervised fuzzy clustering   总被引:3,自引:0,他引:3  
For learning classifier from labeled and unlabeled data, this paper proposes an evolutionary semi-supervised fuzzy clustering algorithm. Class labels information provided by labeled data is used to guide the evolution process of each fuzzy partition on unlabeled data, which plays the role of chromosome. The fitness of each chromosome is evaluated with a combination of fuzzy within cluster variance of unlabeled data and misclassification error of labeled data. The structure of the clusters obtained can be used to classify a future new pattern. The performance of the proposed approach is evaluated using two benchmark data sets. Experimental results indicate that the proposed approach can improve classification accuracy significantly, compared to classifier trained with a small number of labeled data only. Also, it outperforms a similar approach SSFCM.  相似文献
10.
一种半监督K均值多关系数据聚类算法   总被引:3,自引:1,他引:2  
提出了一种半监督K均值多关系数据聚类算法.该算法在K均值聚类算法的基础上扩展了其初始类簇的选择方法和对象相似性度量方法,以用于多关系数据的半监督学习.为了获取高性能,该算法在聚类过程中充分利用了标记数据、对象属性及各种关系信息.多关系数据库Movie上的实验结果验证了该算法的有效性.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号