首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53431篇
  免费   5722篇
  国内免费   3662篇
电工技术   1426篇
技术理论   1篇
综合类   5837篇
化学工业   5239篇
金属工艺   5690篇
机械仪表   4623篇
建筑科学   10080篇
矿业工程   3205篇
能源动力   1442篇
轻工业   3110篇
水利工程   2419篇
石油天然气   3710篇
武器工业   504篇
无线电   1677篇
一般工业技术   8250篇
冶金工业   3203篇
原子能技术   401篇
自动化技术   1998篇
  2024年   122篇
  2023年   734篇
  2022年   1339篇
  2021年   2137篇
  2020年   1828篇
  2019年   1652篇
  2018年   1511篇
  2017年   1788篇
  2016年   1926篇
  2015年   2044篇
  2014年   3067篇
  2013年   3358篇
  2012年   3697篇
  2011年   4029篇
  2010年   3123篇
  2009年   3178篇
  2008年   2945篇
  2007年   3601篇
  2006年   3107篇
  2005年   2684篇
  2004年   2348篇
  2003年   1950篇
  2002年   1641篇
  2001年   1478篇
  2000年   1289篇
  1999年   1012篇
  1998年   848篇
  1997年   766篇
  1996年   652篇
  1995年   554篇
  1994年   439篇
  1993年   374篇
  1992年   330篇
  1991年   224篇
  1990年   214篇
  1989年   208篇
  1988年   121篇
  1987年   97篇
  1986年   58篇
  1985年   63篇
  1984年   61篇
  1983年   36篇
  1982年   38篇
  1981年   14篇
  1980年   33篇
  1979年   23篇
  1964年   12篇
  1961年   6篇
  1959年   9篇
  1955年   11篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
Corrosion and salt deposition problems severely restrict the industrialization of supercritical water oxidation. Transpiring wall reactor can effectively weaken these two problems by a protective water film. In this work, methanol was selected as organic matter, and the influences of vital structural parameters on water film properties and organic matter removal were studied via numerical simulation. The results indicate that higher than 99% of methanol conversion could be obtained and hardly affected by transpiration water layer, transpiring wall porosity and inner diameter. Increasing layer and porosity reduced reactor center temperature, but inner diameter's influence was lower relatively. Water film temperature reduced but coverage rate raised as layer, porosity, and inner diameter increased. Notably, the whole reactor was in supercritical state and coverage rate was only approximately 85% in the case of one layer. Increasing reactor length affected slightly the volume of the upper supercritical zone but enlarged the subcritical zone.  相似文献   
2.
为了研究地应力对凿岩爆破的影响,采用DDA方法模拟爆炸应力波作用下考虑地应力条件时的单孔和多孔凿岩爆破破岩过程。模拟发现,随着初始地应力水平的增加,裂纹扩展半径和破岩区域面积减小,裂纹发育主方向趋于地应力的最大主应力方向,初始地应力对裂纹的抑制和引导作用明显;初始地应力水平的增加,对拉伸裂纹的抑制作用更为显著,从而降低了拉伸破坏对爆破破岩的贡献。模拟也表明,在初始地应力存在的条件下,通过对爆破载荷和炮孔布置进行针对性的优化,可以克服地应力带来的影响,并取得预期的爆破效果。本研究对地应力条件下的凿岩爆破工程具有理论和参考意义。  相似文献   
3.
4.
《Soils and Foundations》2022,62(1):101089
In recent years, the mechanical properties of frozen soils under complex stress states have attracted significant attention; however, limited by the test apparatus, true triaxial tests on frozen soils have rarely been conducted. To study the strength and deformation properties of frozen sand under a true triaxial stress state, a novel frozen soil testing system, i.e., a true triaxial apparatus, was developed. The apparatus is mainly composed of a temperature control system, a servo host system, a hydraulic servo loading system, and a digital control system. Several true triaxial tests were conducted at a constant minor principal stress (σ3) and constant intermediate principal stress ratio (b) to study the effect of intermediate principal stress (σ2) on the mechanical properties of frozen sand. The test results showed that the stress–strain curve can be mainly divided into three stages, with evidence of strain hardening characteristics. The strength, elastic modulus, and friction angle increased with the increase in b from 0 to 0.6, but decreased when increasing b from 0.6 to 1, whereas the cohesion varied little with the variation in b. The deformation in the direction of σ2 changed from dilative to compressive and that in the direction of σ3 remained dilative throughout.  相似文献   
5.
Internal stability assessment of geosynthetic-reinforced soil structures (GRSSs) has been commonly carried out assuming plane-strain conditions and dry backfills. However, failures of GRSSs usually show three-dimensional (3D) features and occur under unsaturated conditions. A procedure based on the kinematic limit-analysis method is proposed herein to assess 3D effects and the role of steady unsaturated infiltration on the required geosynthetic strength for GRSSs. A suction stress-based framework is used to describe the soil stress behavior under steady unsaturated infiltration. Based on the principle of energy-work balance, the required geosynthetic strength is determined. A comparison analysis with the prior research is conducted to verify the developed method. Two kinds of backfills, i.e., high-quality backfill and marginal backfill, are considered for comparison in this work. It is shown that accounting for 3D effects and the role of unsaturated infiltration considerably reduces the required geosynthetic strength. The 3D effects are primarily affected by the width-to-height ratio of GRSSs, and the contribution of unsaturated infiltration is mainly influenced by the soil type, flow rate, GRSS's height, and location of the water table.  相似文献   
6.
There are several methods for estimating bed shear stress in the literature, but comprehensive comparisons among them are limited and under specific conditions. This study compared these methods first on a bare smooth bed, and then for a single geobag on a rough bed in the interest of determining the stability of geobags used in riverbank protection structures. The geobag was filled with cement or sand and tested under different open channel flow conditions. The turbulent kinetic energy method appeared to best represent the local bed shear stress on the geobag when using the newly calibrated proportionality constants. The Reynolds stress method via extrapolation was relatively unaffected by changes to the geobags shape and measurement locations, suggesting this method inadequately represents the local bed shear stress. The Patel method and the universal law of the wall method failed to represent local bed shear stress in the rough bed cases due to instrument limitations and the breakdown of the law of the wall. This study highlights the impact of different methods on the bed shear stress estimation.  相似文献   
7.
Mixing by gas injection is an operation used in industrial processes such as wastewater treatment, metallurgy, or methanization in which pressurized gas is injected into a fluid in order to reduce concentrations and temperatures gradients. This study demonstrates how the CFD toolbox OpenFOAM can be used to simulate such flows. Experimental measurements and observations have been performed on a pilot-scale reactor where pressurized air is injected in a yield stress fluid. The volume of fluid method and an adaptive mesh with refinement at the interface have been used to track the gas inclusions. The numerical model accuracy has been assessed by comparing experimental and numerical results related to the bubble's frequency, dimensions, and rising velocities as well as the fluid recirculation, yielded, and unyielded regions in the tank. The influence of injection parameters such as the injection flow rate and the fluid rheological parameters has been quantified.  相似文献   
8.
针对一种煤矿用本安型缺水传感器在现场安装及维护难度大,以及抽采泵供水状态下管道内有水但传感器检测显示为无水,或抽采泵停止工作时传感器检测显示有水问题,分析原产品中磁体及探头感应装置结构。改进其结构形式,并优化安装,使检测稳定可靠。实现抽采泵管道用缺水传感器的可靠性设计和轻量化设计。  相似文献   
9.
10.
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号