首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4828篇
  免费   356篇
  国内免费   9篇
电工技术   75篇
化学工业   1119篇
金属工艺   105篇
机械仪表   186篇
建筑科学   141篇
矿业工程   9篇
能源动力   212篇
轻工业   820篇
水利工程   67篇
石油天然气   30篇
无线电   328篇
一般工业技术   843篇
冶金工业   374篇
原子能技术   42篇
自动化技术   842篇
  2024年   11篇
  2023年   44篇
  2022年   74篇
  2021年   252篇
  2020年   173篇
  2019年   180篇
  2018年   199篇
  2017年   225篇
  2016年   218篇
  2015年   181篇
  2014年   250篇
  2013年   404篇
  2012年   366篇
  2011年   385篇
  2010年   289篇
  2009年   247篇
  2008年   246篇
  2007年   212篇
  2006年   155篇
  2005年   105篇
  2004年   122篇
  2003年   72篇
  2002年   100篇
  2001年   74篇
  2000年   47篇
  1999年   40篇
  1998年   125篇
  1997年   83篇
  1996年   53篇
  1995年   46篇
  1994年   30篇
  1993年   28篇
  1992年   13篇
  1991年   9篇
  1990年   16篇
  1989年   14篇
  1988年   14篇
  1987年   4篇
  1986年   11篇
  1985年   8篇
  1984年   10篇
  1983年   6篇
  1982年   4篇
  1981年   9篇
  1980年   5篇
  1978年   2篇
  1977年   7篇
  1976年   10篇
  1974年   3篇
  1966年   2篇
排序方式: 共有5193条查询结果,搜索用时 46 毫秒
1.
Mobile Networks and Applications - Blockchain applications have continuously improved ever since its first debut on cryptocurrency. From then on, its uses have branched out from the financial...  相似文献   
2.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
3.
4.
Here we report some recent biophysical issues on the preparation of solute-filled lipid vesicles and their relevance to the construction of “synthetic cells.” First, we introduce the “semi-synthetic minimal cells” as the liposome-based cell-like systems, which contain a minimal number of biomolecules required to display simple and complex biological functions. Next, we focus on recent aspects related to the construction of synthetic cells. Emphasis is given to the interplay between the methods of synthetic cell preparation and the physics of solute encapsulation. We briefly introduce the notion of structural and compositional “diversity” in synthetic cell populations.  相似文献   
5.
6.
7.
An intertwined supply network (ISN) is an entirety of interconnected supply chains (SC) which, in their integrity secure the provision of society and markets with goods and services. The ISNs are open systems with structural dynamics since the firms may exhibit multiple behaviours by changing the buyer-supplier roles in interconnected or even competing SCs. From the positions of resilience, the ISNs as a whole provide services to society (e.g. food service, mobility service or communication service) which are required to ensure a long-term survival. The analysis of survivability at the level of ISN requires a consideration at a large scale as resilience of individual SCs. The recent example of coronavirus COVID-19 outbreak clearly shows the necessity of this new perspective. Our study introduces a new angle in SC resilience research when a resistance to extraordinary disruptions needs to be considered at the scale of viability. We elaborate on the integrity of the ISN and viability. The contribution of our position study lies in a conceptualisation of a novel decision-making environment of ISN viability. We illustrate the viability formation through a dynamic game-theoretic modelling of a biological system that resembles the ISN. We discuss some future research areas.  相似文献   
8.
The work reported involved the fabrication of an electrospun tubular conduit of a gelatin and polycaprolactone (PCL) blend as an adventitia‐equivalent construct. Gelatin was included as the matrix for increased biocompatibility with the addition of PCL for durability. This is contrary to most of the literature available for biomaterials based on blends of gelatin and PCL where PCL is the major matrix. The work includes the assiduous selection of key electrospinning parameters to obtain smooth bead‐free fibres with a narrow distribution of pore size and fibre diameter. Few reports elucidate the optimization of all electrospinning parameters to fabricate tubular conduits with a focus on obtaining homogeneous pores and fibres. This stepwise investigation would be unique for the fabrication of gelatin–PCL electrospun tubular constructs. The fabricated microfibrous gelatin–PCL constructs had pores of size ca 50–100 μm reportedly conducive for cell infiltration. The measured value of surface roughness of 57.99 ± 17.4 nm is reported to be favourable for protein adhesion and cell adhesion. The elastic modulus was observed to be similar to that of the tunica adventitia of the native artery. Preliminary in vitro and in vivo biocompatibility tests suggest safe applicability as a biomaterial. Minimal cytotoxicity was observed using MTT assay. Subcutaneous implantation of the scaffold demonstrated acute inflammation which decreased by day 15. The findings of this study could enable the fabrication of smooth bead‐free microfibrous gelatin–PCL tubular construct as viable biomaterial which can be included in a bilayer or a trilayer scaffold for vascular tissue engineering. © 2019 Society of Chemical Industry  相似文献   
9.
10.
This study investigates the preparation of polyetherimide (PEI) – LaNi5 composites films for hydrogen storage. Prior to the polymer addition, LaNi5 was ball-milled at different conditions (250, 350, and 450 RPM) and annealed at 500 °C for 1 h under vacuum. The composites were produced with BM-LaNi5-350 (PEI/LaNi5-350) and annealed BM-LaNi5-350 (PEI/LaNi5-350-TT). Membranes were successfully produced through solvent casting assisted by an ultrasonic bath. The particles dispersion and the film morphology did not change after hydrogenation cycles. In the H2 sorption experiments at 43 °C and 20 bar, the films stored H2 without incubation time; both samples reached a capacity of ~0.6 wt%. The H2 sorption kinetics of PEI/LaNi5-350 was comparable to that of BM-LaNi5-350, whereas PEI/LaNi5-350-TT presented significantly slower kinetics. LaNi5 oxidation was hindered by PEI, showing that it can be explored to improve metal hydrides air resistance. The results demonstrated that PEI films filled with LaNi5 are promising materials for hydrogen storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号