首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   2篇
化学工业   14篇
能源动力   9篇
轻工业   4篇
无线电   1篇
一般工业技术   9篇
冶金工业   4篇
自动化技术   5篇
  2022年   1篇
  2021年   3篇
  2019年   3篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2000年   2篇
  1998年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1986年   1篇
  1982年   1篇
  1977年   1篇
排序方式: 共有46条查询结果,搜索用时 72 毫秒
1.
Temperature programmed reduction (TPR) analysis was applied to investigate the chemical reduction progression behavior of molybdenum oxide (MoO3) catalyst. The composition and morphology of the reduced phases were characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). The reduction progression of MoO3 catalyst was attained with different reductant types and concentration (10% H2/N2, 10% and 20% CO/N2 (%, v/v)). Two different modes of reduction process were applied. The first approach of reduction involved non-isothermal mode reduction up to 700 °C, while the second approach of reduction involved the isothermal mode reduction for 60 min at 700 °C. Hydrogen temperature programmed reduction (H2-TPR) results showed the reduction progression of three-stage reduction of MoO3 (Mo6+ → Mo5+ → Mo4+ → Mo0) with Mo5+ and Mo4+. XRD analysis confirmed the formation of Mo4O11 phase as an intermediate phase followed by MoO2 phase. After 60 min of isothermal reduction, peaks of metallic molybdenum (Mo) appeared. Whereas, FESEM analysis showed porous crater-like structure on the surface cracks of MoO2 layer which led to the growth of Mo phase. Meanwhile, the reduction of MoO3 catalyst in 10% carbon monoxide (CO) showed the formation of unstable intermediate phase of Mo9O26 at the early stage of reduction. Furthermore, by increasing 20% CO led to the carburization of MoO2 phase, resulted in the formation of Mo2C rather than the formation of metallic Mo, as confirmed by XPS analysis. Therefore, the presented study shows that hydrogen gave better reducibility due to smaller molecular size, which contributed to high diffusion rate and achieved deeper penetration into the MoO3 catalyst compared to carbon monoxide reductant. Hence, the reduction of MoO3 in carbon monoxide atmosphere promoted the formation of Mo2C which was in agreement with the thermodynamic assessment.  相似文献   
2.
Recent improvements in the performance of photocatalysts made it possible to tackle pollution through environment friendly methods. This study investigates the modification of the photocatalytic activity of TiO2 by employing WO3 and conductive polymers, namely, polyaniline (Pani) and polypyrrole (Ppy). Basing on our previous improvement of TiO2 using a conductive polymer and activated carbon (AC), this study determines the activated carbon forms of TiO2. The prepared composites are characterized using X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared, thermogravimetric analysis, Brunauer–Emmet–Teller, and UV–Vis spectroscopy. The specific surface area of the mesoporous composites is as follows: WO3/TiO2·AC (Pani) > WO3/TiO2·AC (Ppy) > WO3/TiO2·Pani > WO3/TiO2·Ppy (127 > 98 > 68 > 44 m2 g?1), which exhibited a similar trend to the photocatalytic performances (100 > 95 > 91 > 72 % conversion rate). This result could be attributed to higher porosity, surge of charge separation, and photo-responding range extension induced by the synergistic effect of WO3, conducting polymers, and TiO2 in the samples.  相似文献   
3.
The cells of Streptomyces sp. YB-1 adsorbed 4-6 mg ytterbium (Yb) per g dry weight. The Yb contents of the cell wall fraction, cell-free extract, and cell membrane fraction were 11%, 2%, and 87%, respectively. The Yb content in the cell membrane fraction was 20-25 mg per g dry weight. The adsorbed Yb could be quantitatively desorbed by treating the cell membrane fraction with 1 mM EDTA and 1 M HCl at 37 degrees C for 4 h. Treatment with 1 M NaOH caused Yb desorption to some extent. Treatments with proteinase K, lysozyme, 0.5% Triton X-100, 0.4% sodium dodecyl sulfate, and 1 M NaCl did not cause Yb desorption. Elemental analysis of Yb-adsorbed materials after removal of proteins and then extraction of lipids from the membrane fraction revealed that the molar ratio of Yb and P in the materials was about 1:1. The cells and the membrane fraction could be used repeatedly as a bioadsorbent for Yb.  相似文献   
4.
Uranium–zirconium alloy is the potential candidate material as metallic fuels for nuclear reactor applications. Fabrication of uranium zirconium alloy can be made either by powder metallurgy or by melting method. Both the method has its own advantages and selection of the fabrication route depends on its application as fuel. In this work investigations were carried out on fabrication of uranium–zirconium alloys (i.e. U–40 wt% Zr, U–50 wt% Zr, U–60 wt% Zr and U–70 wt% Zr) using both powder metallurgy and melting method. It is heat treated at different conditions. Apart from other characterization, X-ray diffraction analysis was carried out to evaluate phase content of the alloy and reported here.  相似文献   
5.
Using a surfactant-mediated method (surfactant based on cetyltrimethyl ammonium bromide, CTAB) V2O5 nanorod and nanoparticles have been successfully prepared. Morphologies of V2O5 nanostructures can be controlled by applying different precursors and by varying reaction conditions within the CTAB soft template. With ammonium metavanadate and sulfuric acid as precursors, nanoparticles are synthesized in the size range of 45–160 nm. Precursors of vanadyl sulfate hydrate and sodium hydroxide yield vanadium pentoxide nanorods with diameters of 30–90 nm and lengths of 260–600 nm. The resulting products are characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), variable pressure scanning electron microscopy (VPSEM) and X-ray photoelectron spectroscopy (XPS). Temperature programmed reduction (TPR) is included to test catalytic performance. The results show that V2O5 nanoparticles and nanorods achieve better catalytic performance compared to bulk V2O5, i.e. lower onset temperature, workability at lower temperatures, and higher H2 consumption (μmol/g).  相似文献   
6.
It has been shown that the activated carbon-supported zirconium sulfate (ZS) is an efficient solid catalyst for the esterification of oleic acid by n-butanol under solvent-free condition. The effect of mole ratio of the reactant, time and catalyst loading on the conversion was examined. The correlation among XRD, nitrogen adsorption data and catalytic activity suggested that ZS has been finely dispersed on activated carbon, which are active in the esterification of oleic acid. The reaction shows that the supported ZS exhibits a higher activity than that of parent ZS and conventional resins.  相似文献   
7.
8.
In the present study, a series of as-synthesized palm-based nonionic surfactants with various hydrophile–lipophile balance values were successfully synthesized. The critical micelle concentration and the Gibbs energy of the surfactants were determined and discussed. For the first time, the surfactants were used to stabilize three-component olein oil-in-water high internal phase emulsions, with an oil volume fraction of 0.85, and which were easily prepared by one-pot homogenization. Proof of high stability was confirmed by the satisfactory rheological profiles and further enhanced by a three-month storage exercise at an elevated temperature which showed no significant physical and rheological changes. These results suggest that low concentration of the surfactants efficiently stabilized the emulsions with high content of oil. Based on the optical micrograph observation, an average droplet size of less than 10 μm increased with increasing ethylene oxide chain length and temperature. The varying degree of viscosity resulted from the various ethylene oxide chain lengths of the surfactants. The hydration efficacy of the emulsions was examined in vivo using a corneometer. The impressive hydration efficacy of olein oil suggests that it could well be a potential moisturizing lipid which might interest dermatologists.  相似文献   
9.
This study focuses on understanding the relationship between iron redox, composition, and heat-treatment atmosphere in nepheline-based model high-level nuclear waste glasses. Glasses in the Na2O–Al2O3–B2O3–Fe2O3–SiO2 system with varying Al2O3/Fe2O3 and Na2O/Fe2O3 ratios have been synthesized by melt-quench technique and studied for their crystallization behavior in different heating atmospheres—air, inert (N2), and reducing (96%N2–4%H2). The compositional dependence of iron redox chemistry in glasses and the impact of heating environment and crystallization on iron coordination in glass-ceramics have been investigated by Mössbauer spectroscopy and vibrating sample magnetometry. While iron coordination in glasses and glass-ceramics changed as a function of glass chemistry, the heating atmosphere during crystallization exhibited minimal effect on iron redox. The change in heating atmosphere did not affect the phase assemblage but did affect the microstructural evolution. While glass-ceramics produced as a result of heat treatment in air and N2 atmospheres developed a golden/brown colored iron-rich layer on their surface, those produced in a reducing atmosphere did not exhibit any such phenomenon. Furthermore, while this iron-rich layer was observed in glass-ceramics with varying Al2O3/Fe2O3 ratio, it was absent from glass-ceramics with varying Na2O/Fe2O3 ratio. An explanation of these results has been provided on the basis of kinetics of diffusion of oxygen and network modifiers in the glasses under different thermodynamic conditions. The plausible implications of the formation of iron-rich layer on the surface of glass-ceramics on the chemical durability of high-level nuclear waste glasses have been discussed.  相似文献   
10.
Nitrophenols (NPs) and their derivatives are highly toxic, mutagenic and bio-refractory pollutants commonly present in natural water resources and industrial wastewater. To remove NPs from water, N-doped graphitic carbon (NGC) and NGC adsorbent containing titanium dioxide (NGC–TiO2) were synthesized by pyrolysis of microcrystalline cellulose and dopamine mixture, and the mixture along with TiO2 at 500°C, respectively. NCG-TiO2 was thoroughly characterized using various analytical techniques. NP adsorption on the NGC–TiO2 adsorbent surface was studied by varying the pH, initial concentration of NP, and adsorbent dose. The results showed that the most efficient adsorption was achieved at pH 3. After 4?h sonication at pH 3, 80% 4-NP adsorption was achieved using NGC–TiO2 compared to 74% with NGC adsorbent. The percentage removal of 4-NP was higher than 3-NP which was also higher than 2,4-DNP using NGC–TiO2. 4-NP adsorption best fitted to the Langmuir isotherm plot with R2 value of 0.9981 and adsorption capacity of 52.91?mg?g?1. The adsorption process of NP was found to follow a pseudo-second-order kinetic model. The rate constant value for the adsorption of 10?4?M 4-NP at pH 3 using 10?mg of NGC–TiO2 adsorbent was found to be 3.76?×?10?5?g.mg?1.min?1  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号