首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   4篇
  国内免费   1篇
电工技术   4篇
化学工业   23篇
金属工艺   6篇
机械仪表   15篇
矿业工程   1篇
能源动力   4篇
轻工业   2篇
无线电   42篇
一般工业技术   28篇
冶金工业   21篇
原子能技术   1篇
自动化技术   10篇
  2023年   1篇
  2022年   6篇
  2021年   13篇
  2020年   5篇
  2019年   3篇
  2018年   4篇
  2017年   11篇
  2016年   5篇
  2014年   3篇
  2013年   14篇
  2012年   3篇
  2011年   7篇
  2010年   4篇
  2009年   9篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   8篇
  2001年   2篇
  2000年   3篇
  1999年   7篇
  1998年   1篇
  1997年   6篇
  1996年   2篇
  1995年   6篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有157条查询结果,搜索用时 46 毫秒
1.
Wireless Personal Communications - The rapid development of Information and Communication Technology and the growing number of devices connected to the Internet make the Internet of Things (IoT) as...  相似文献   
2.
Hydrothermally prepared zinc oxide nanorods are sulphonated (S–ZnO NR) and incorporated into 15% Sulphonated Poly (1,4-Phenylene Ether Ether Sulfone) (SPEES) to improve the hydrophilicity, water uptake and ion transfer capacity. Water uptake and ion transfer capacity increased to 34.6 ± 0.6% and 2.0 ± 0.05 meq g?1 from 29.8 ± 0.3% and 1.4 ± 0.04 meq g?1 by adding 7.5 wt% S–ZnO NR to SPEES. Morphological studies show the prepared S–ZnO NR is well dispersed in the polymer matrix. SPEES +7.5 wt% S–ZnO NR membrane exhibits optimum performance after three-weeks of continual operation in a fabricated microbial fuel cell (MFC) to produce a maximum power density of 142 ± 1.2 mW m?2 with a reduced biofilm compared to plain SPEES (59 ± 0.8 mW m?2), unsulphonated filler incorporated SPEES (SPEES + 7.5 wt% ZnO, 68 ± 1.1 mW m?2) and Nafion (130 ± 1.5 mW m?2) thereby suggesting its suitability as a sustainable and improved cation exchange membrane (CEM) for MFCs.  相似文献   
3.
Hydrogen fuel is a promising alternative to fossil fuels because of its energy content, clean nature, and fuel efficiency. However, it is not readily available. Most current producion processes are very energy intensive and emit carbon dioxide. Therefore, this article reviews technological options for hydrogen production that are eco-friendly and generate clean hydrogen fuel. Biological methods, such different fermentation processes and photolysis are discussed together with the required substrates and the process efficiency.  相似文献   
4.
5.
Antibody microarrays are gaining popularity as a high-throughput technology to investigate the proteome. However, protein extracts from most body fluid or biopsy samples are available in very small volumes and are often unsuitable for large-scale antibody microarray studies. To demonstrate the potential for protein analysis with as little as a few nanoliters of sample, we have developed a new technology called NanoProbeArrays based on piezoelectric liquid dispensing for non-contact printing and probing of antibody arrays. Instead of flooding the protein sample on the antibody microarray surface, as in conventional microarray screening, a piezoelectric inkjet printer is used to dispense nanoliters of fluorescently labeled proteins over the antibody spots on the array. The ability of NanoProbeArrays to precisely identify and reliably distinguish between test proteins from different sources, without any loss of sensitivity and specificity as compared with conventional antibody microarrays, is illustrated here. The utility of NanoProbeArrays for biomarker identification in a complex biological sample was tested by detecting the cytokine interleukin-4 in serum. The significant reduction in volume of sample during NanoProbeArray analysis, as compared with conventional antibody microarrays, offers new opportunities for basic and applied proteomic research.  相似文献   
6.
ECAP is an effective process to improve the mechanical strength and wear resistance along with mechanical and microstructural properties. AA2014 solutionized at 495 °C and aged at 195 °C was subjected to Equal Channel Angular Pressed (ECAP) through route A and Bc at room temperature. It was well proved that the mechanical strength increased due to ECAP in AA2014. In order to investigate their wear behavior after ECAP, dry sliding wear tests were conducted using vacuum tribometer at nominal loads of 10N and 30N with constant speed of 2 m/s for sliding distance of 2000 m. The co-efficient of friction and loss in volume were decreased after ECAP both in route A and Bc. The dominant wear mechanisms observed were adhesive, delamination and stick slip process. In addition to these wear mechanisms, abrasive wear also appeared along with transfer of iron particles from the counter surface to the AA2014 pin. Presence of black powder and oxide formation were observed using EDAX analysis on wear debris. Routes A and Bc showed similar wear mechanisms and characteristics which were better than in unECAPed specimens.  相似文献   
7.
The present work is aimed at developing a bioactive, corrosion resistant and anti bacterial nanostructured silver substituted hydroxyapatite/titania (AgHA/TiO2) composite coating in a single step on commercially pure titanium (Cp Ti) by plasma electrolytic processing (PEP) technique. For this purpose 2.5 wt% silver substituted hydroxyapatite (AgHA) nanoparticles were prepared by microwave processing technique and were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM) methods. The as-synthesized AgHA particles with particle length ranging from 60 to 70 nm and width ranging from 15 to 20 nm were used for the subsequent development of coating on Cp Ti. The PEP treated Cp Ti showed both titania and AgHA in its coating and exhibited an improved corrosion resistance in 7.4 pH simulated body fluid (SBF) and 4.5 pH osteoclast bioresorbable conditions compared to untreated Cp Ti. The in vitro bioactivity test conducted under Kokubo SBF conditions indicated an enhanced apatite forming ability of PEP treated Cp Ti surface compared to that of the untreated Cp Ti. The Kirby-Bauer disc diffusion method or antibiotic sensitivity test conducted with the test organisms of Escherichia coli (E. coli) for 24 h showed a significant zone of inhibition for PEP treated Cp Ti compared to untreated Cp Ti.  相似文献   
8.
Flux Bounded Tungsten Inert Gas (FBTIG) welding is a modified TIG welding process in which increased depth of penetration (DoP) can be achieved by laying thin flux coatings on either side of the weld centerline. The effect of three single component fluxes viz., SiO2, TiO2 and Cr2O3 on bead geometry of autogenous melt runs in AISI 304L stainless steel for the gap between the flux layers varying from 2 to 7 mm, is studied. Results show that DoP can be improved significantly in FBTIG process using single component fluxes. Nature of the flux and the gap between the flux layers influence the weld bead geometry. Among the three fluxes used, SiO2 is more efficient in improving the DoP. Arc constriction is the predominant mechanism operative in improving the DoP in FBTIG welding. Possibility of change in solidification mode in FBTIG weld metals of stainless steels is highlighted.  相似文献   
9.
The attempted selenium dioxide oxidation of substituted diphenacyl sulfides in anticipation of further functionalization led to a series of α -ketoacids 3 via oxidation followed by C?S bond cleavage. Two minor products, 5 and 6, have also been isolated and a mechanistic pathway for the formation of 3, 5 and 6 has been proposed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号