首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   16篇
  国内免费   2篇
电工技术   8篇
综合类   2篇
化学工业   97篇
金属工艺   2篇
机械仪表   35篇
建筑科学   3篇
能源动力   10篇
轻工业   33篇
水利工程   11篇
石油天然气   4篇
无线电   47篇
一般工业技术   80篇
冶金工业   4篇
原子能技术   2篇
自动化技术   70篇
  2023年   20篇
  2022年   29篇
  2021年   37篇
  2020年   33篇
  2019年   33篇
  2018年   41篇
  2017年   18篇
  2016年   24篇
  2015年   18篇
  2014年   11篇
  2013年   31篇
  2012年   19篇
  2011年   18篇
  2010年   14篇
  2009年   11篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1972年   1篇
排序方式: 共有408条查询结果,搜索用时 15 毫秒
1.
In this study, dilute chemical bath deposition technique has been used to deposit CdZnS thin films on soda-lime glass substrates. The structural, morphological, optoelectronic properties of as-grown films have been investigated as a function of different Zn2+ precursor concentrations. The X-ray diffractogram of CdS thin-film reveals a peak corresponding to (002) plane with wurtzite structure, and the peak shift has been observed with the increase of the Zn2+ concentration upon formation of CdZnS thin film. From morphological studies, it has been revealed that the diluted chemical bath deposition technique provides homogeneous distribution of film on the substrate even at a lower concentration of Zn2+. Optical characterization has shown that the transparency of the film is influenced by Zn2+ concentration and when the Zn2+ concentration is varied from 0 M to 0.0256 M, bandgap values of resulting films range from 2.42 eV to 3.90 eV while. Furthermore, electrical properties have shown that with increasing zinc concentration the resistivity of the film increases. Finally, numerical simulation validates and suggests that CdZnS buffer layer with composition of 0.0032 M Zn2+ concentration would be a promising candidate in CIGS solar cell.  相似文献   
2.
3.
Macaroni was prepared from semolina fortified with 3, 6 and 9% CMC-protein (CMC — carboxymethyl cellulose) or HEC-protein (HEC — hydroxyethyl cellulose) complexes from whey and corn steep liquor to increase the protein quality and quantity. Fortification increased the protein content up to 14.2% in DM (vs. 12.1% in control) for macaroni. Water absorption, dough weakening and mixing tolerance index were decreased, while dough development time and dough stability were increased when the amount of precipitated cellulose-protein complex from whey and corn steep liquor in the blends increased. Addition of both tested cellulose-protein complexes improved cooking quality by increasing the weight and volume of cooked macaroni, but cooking losses were greater. Sensory evaluation of the colour, flavour and appearance of macaroni were improved as a result of adding cellulose-protein complex from whey. Macaroni samples prepared from dough mixtures with 6 and 9% of cellulose-protein complex from corn steep liquor were less acceptable than those prepared from 100% semolina.  相似文献   
4.
We have investigated the adsorption and reaction of methanol with Au/TiO2 catalysts using a pulsed flow reactor, DRIFTS and TPD. The TiO2 (P25) surface adsorbed a full monolayer of methanol, much of it in a dissociative manner, forming methoxy groups associated with the cationic sites, and hydroxyl groups at the anions. The methoxy is relatively stable until 250 °C, at which point decomposition occurs, producing mainly dimethyl ether by a bimolecular surface reaction. As the concentration of methoxy on the surface diminishes, so the mechanism reverts to a de-oxygenation pathway, producing mainly methane and water (at ~330 °C in TPD), but also with some coincident CO and hydrogen. Au catalysts were prepared by the deposition-precipitation method to give Au loadings between 0.5–3 wt %. The effect of low levels of Au on the reactivity is marked. The pathway which gives methane, which is characteristic of titania, remains, but a new feature of the reaction is the evolution of CO2 and H2 at lower temperature (a peak is seen in TPD at 220 °C), and the elimination of the DME-producing state. Clearly this is associated with the presence of Au and appears to be due to the production of a formate species on the surface of the Au component. This formate species is mainly involved in the reaction of methanol with the Au/TiO2 catalysts which results in a combustion pathway being followed, with complete conversion occurring by ~130 °C.  相似文献   
5.

Speech emotion recognition (SER) systems identify emotions from the human voice in the areas of smart healthcare, driving a vehicle, call centers, automatic translation systems, and human-machine interaction. In the classical SER process, discriminative acoustic feature extraction is the most important and challenging step because discriminative features influence the classifier performance and decrease the computational time. Nonetheless, current handcrafted acoustic features suffer from limited capability and accuracy in constructing a SER system for real-time implementation. Therefore, to overcome the limitations of handcrafted features, in recent years, variety of deep learning techniques have been proposed and employed for automatic feature extraction in the field of emotion prediction from speech signals. However, to the best of our knowledge, there is no in-depth review study is available that critically appraises and summarizes the existing deep learning techniques with their strengths and weaknesses for SER. Hence, this study aims to present a comprehensive review of deep learning techniques, uniqueness, benefits and their limitations for SER. Moreover, this review study also presents speech processing techniques, performance measures and publicly available emotional speech databases. Furthermore, this review also discusses the significance of the findings of the primary studies. Finally, it also presents open research issues and challenges that need significant research efforts and enhancements in the field of SER systems.

  相似文献   
6.
Two phase-based nanocomposites consisting of dielectric barium titanate (BaTiO3 or BTO) and magnetic spinel ferrite Co0.5Ni0.5Nb0.06Fe1.94O4 (CNNFO) have been synthesized through solid state route. Series of (BaTiO3)1-x + (Co0.5Ni0.5Nb0.06Fe1.94O4)x nanocomposites with x content of 0.00, 0.25, 0.50, 0.75, and 1.00 were considered. The structure has been examined via X-rays diffraction (XRD) and indicated the occurrence of both perovskite BTO and spinel CNNFO phases in various nanocomposites. A phase transition from tetragonal BTO structure to cubic structure occurs with inclusion of CNNFO phase. The average crystallites size of BTO phase decreases, whereas that for the CNNFO phase increases with increasing x in various nanocomposites. The morphological observations revealed that the porosity is highly reduced, and the connectivity between grains is enhanced with increasing x content. The optical properties have been investigated by UV−vis diffuse reflectance spectroscopy. The deduced band gap energy (Eg) value is found to reduce with increasing the content of spinel ferrite phase. The magnetic as well as the dielectric properties were also investigated. The analysis showed that CNNFO ferrite phase greatly affects the magnetic properties and dielectric response of BTO material. The obtained findings can be useful to enhance the performances of magneto-dielectric composite-based systems.  相似文献   
7.
This study reports the effect of polydopamine bionic coating and γ-methacryloxypropyltrimethoxysilane (KH570) composite modified polyacrylonitrile (PAN) fiber as a secondary modifier on the performance of styrene-butadiene-styrene (SBS) modified asphalt. Dynamic shear rheometer test indicated the complex shear modulu, storage modulus, and loss modulus of modified PAN (KD-PAN) incorporated SBS modified asphalt was increased by 12.4, 20.5, and 11.2%, respectively compared with PAN/SBS modified asphalt. The master curve of G* of fiber/SBS composite modified asphalt shows that the deformation resistance of KD-PAN/SBS modified asphalt is greater than that of PAN/SBS modified asphalt in the entire loading frequency range. The cone penetration test showed significantly enhanced shear strength of KD-PAN/SBS modified asphalt. The adhesion work test results and SEM images of interface between fiber and SBS modified asphalt revealed that the adhesion effect of KD-PAN and SBS modified asphalt is better than that of PAN and SBS modified asphalt. SEM and AFM images of fiber further showed that the fiber surface becomes rough after modification. The increased surface roughness of KD-PAN facilitated the adherence of SBS modified asphalt to it, which in turn led to the enhanced performance of KD-PAN/SBS composite modified asphalt at the same fiber content and temperature.  相似文献   
8.
Biomedical image processing is widely utilized for disease detection and classification of biomedical images. Tongue color image analysis is an effective and non-invasive tool for carrying out secondary detection at anytime and anywhere. For removing the qualitative aspect, tongue images are quantitatively inspected, proposing a novel disease classification model in an automated way is preferable. This article introduces a novel political optimizer with deep learning enabled tongue color image analysis (PODL-TCIA) technique. The presented PODL-TCIA model purposes to detect the occurrence of the disease by examining the color of the tongue. To attain this, the PODL-TCIA model initially performs image pre-processing to enhance medical image quality. Followed by, Inception with ResNet-v2 model is employed for feature extraction. Besides, political optimizer (PO) with twin support vector machine (TSVM) model is exploited for image classification process, shows the novelty of the work. The design of PO algorithm assists in the optimal parameter selection of the TSVM model. For ensuring the enhanced outcomes of the PODL-TCIA model, a wide-ranging experimental analysis was applied and the outcomes reported the betterment of the PODL-TCIA model over the recent approaches.  相似文献   
9.
10.
Data available in software engineering for many applications contains variability and it is not possible to say which variable helps in the process of the prediction. Most of the work present in software defect prediction is focused on the selection of best prediction techniques. For this purpose, deep learning and ensemble models have shown promising results. In contrast, there are very few researches that deals with cleaning the training data and selection of best parameter values from the data. Sometimes data available for training the models have high variability and this variability may cause a decrease in model accuracy. To deal with this problem we used the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) for selection of the best variables to train the model. A simple ANN model with one input, one output and two hidden layers was used for the training instead of a very deep and complex model. AIC and BIC values are calculated and combination for minimum AIC and BIC values to be selected for the best model. At first, variables were narrowed down to a smaller number using correlation values. Then subsets for all the possible variable combinations were formed. In the end, an artificial neural network (ANN) model was trained for each subset and the best model was selected on the basis of the smallest AIC and BIC value. It was found that combination of only two variables’ ns and entropy are best for software defect prediction as it gives minimum AIC and BIC values. While, nm and npt is the worst combination and gives maximum AIC and BIC values.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号