首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
矿业工程   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
排序方式: 共有3条查询结果,搜索用时 187 毫秒
1
1.
研究煤岩组合体在不同应力条件下的变形损伤规律,对揭示矿山动力灾害机制具有重要 意义。 在单轴加载条件下,分析原生煤岩组合体、人工煤岩组合体及煤岩单体应力-应变规律,通 过采集加载过程中试样声发射行为信息,初步探究原生煤岩组合体损伤破坏规律。 对比分析发 现:① 煤岩组合体界面的差异对煤岩组合体力学性质、声发射特征具有较大影响;② 单轴加载条 件下4种试样抗压强度依次为:岩样>人工煤岩组合体试样>原生煤岩组合体试样>煤样;③ 组 合体受载变形和峰值强度受介质间界面条件、弹性模量及尺寸效应等多重因素影响;④ 原生煤 岩组合体在加载屈服破坏阶段内部裂隙发育贯通现象相对活跃,且早期损伤主要发生在原生煤 岩组合体界面或附近煤岩体。  相似文献   
2.
为探索轴压加载速率和围压卸载速率对采动含瓦斯煤损伤-渗透时效特性的影响规律,利用煤岩吸附-渗流-力学耦合特性测定仪开展了不同加卸载速率条件下煤体损伤-渗透试验。研究结果表明,轴压加载速率或围压卸载速率越高,试样损伤破坏的时间响应越快,峰值强度呈小幅度降低,即加卸载速率显著影响着试样损伤破坏的时效特性,但对试样抵抗破坏的能力影响较小;加卸载速率较低时试样呈相对稳态损伤,加卸载速率较高时试样损伤程度较高且呈非稳态损伤特征,易发生突崩式破坏;加卸载速率越高,则试样渗透率的时间响应越快,增幅越大,恒轴压卸围压试样的峰后渗透率可达到原始渗透率的163.0%~206.3%;围压卸载对采动煤体损伤-渗透的影响作用远大于轴压加载,因此在工程实践中需适当控制煤层开采速度,以有效避免煤岩瓦斯动力灾害。  相似文献   
3.
蔡永博  王凯  袁亮  徐超  付强  孔德磊 《煤炭学报》2019,44(5):1527-1535
为研究保护层开采过程中下伏煤岩体卸荷损伤变形演化特征,运用FLAC~(3D)数值模拟方法及现场实验测量手段,以山西保德煤矿实际情况为研究背景,对保护层开采过程中下伏煤岩体应力、变形、塑性演化规律进行了研究及验证。研究表明:保护层开采过程中,被保护层应力呈增大—减小—增大的变化规律,下伏煤岩体应力在空间上呈现出明显的"O"形应力分布规律;受保护层采动影响,下伏煤层测点经过原岩应力、应力集中、采动卸压、应力恢复4个阶段;最大应力集中系数与最小卸荷比为固定值,且出现时间相同,工作面前方应力集中系数与工作面后方卸荷比均呈往复性变化,变化周期与工作面来压周期相关;本文实例中,最大应力集中系数约为1. 32,此时测点受到的z向应力值达到最大;最小卸压比约为4. 4%,此时测点受到的z向应力值达到最小,卸压效果最好;受应力变化影响,被保护层呈压缩—恢复—膨胀—回缩的基本变化规律,最终状态保持一定的膨胀变形,与应力分区相对应,根据不同变形特征可将下伏煤层分为原岩状态区、压缩变形区、卸压膨胀区、变形恢复区;本文实例中11号煤层最大膨胀变形量约为0. 6%,此时测点裂隙最为发育,增透效果最好,有利于瓦斯卸压抽采;受应力变化影响,下伏煤岩体塑形区域范围在空间上呈先xyz三向增大—x轴方向单向增大y轴z轴2个方向稳定的变化规律;随着工作面的回采,被保护层煤体塑性区范围在x轴方向不断增加;通过实测保德煤矿81307工作面回采过程中下伏11号煤地应力、膨胀变形量,对深部煤岩体卸荷损伤变形演化特征数值模拟结果进行了验证,下伏11号煤地应力、膨胀变形量变化规律与数值模拟规律较为吻合。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号