首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43551篇
  免费   14927篇
  国内免费   18篇
电工技术   795篇
综合类   7篇
化学工业   18306篇
金属工艺   619篇
机械仪表   1180篇
建筑科学   1779篇
矿业工程   1篇
能源动力   1114篇
轻工业   7675篇
水利工程   299篇
石油天然气   50篇
无线电   7864篇
一般工业技术   12586篇
冶金工业   1025篇
原子能技术   86篇
自动化技术   5110篇
  2024年   6篇
  2023年   96篇
  2022年   76篇
  2021年   459篇
  2020年   1547篇
  2019年   3312篇
  2018年   3290篇
  2017年   3592篇
  2016年   4065篇
  2015年   4082篇
  2014年   4121篇
  2013年   5349篇
  2012年   3114篇
  2011年   2873篇
  2010年   3012篇
  2009年   2904篇
  2008年   2415篇
  2007年   2183篇
  2006年   1909篇
  2005年   1591篇
  2004年   1546篇
  2003年   1495篇
  2002年   1413篇
  2001年   1221篇
  2000年   1195篇
  1999年   584篇
  1998年   214篇
  1997年   159篇
  1996年   108篇
  1995年   98篇
  1994年   87篇
  1993年   58篇
  1992年   56篇
  1991年   42篇
  1990年   36篇
  1989年   26篇
  1988年   22篇
  1987年   27篇
  1986年   27篇
  1985年   15篇
  1984年   7篇
  1983年   11篇
  1982年   4篇
  1981年   7篇
  1980年   4篇
  1977年   8篇
  1976年   10篇
  1975年   4篇
  1974年   3篇
  1973年   3篇
排序方式: 共有10000条查询结果,搜索用时 22 毫秒
1.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
2.
The aim of this exploratory study has been to investigate the fire properties and environmental aspects of different upholstery material combinations, mainly for domestic applications. An analysis of the sustainability and circularity of selected textiles, along with lifecycle assessment, is used to qualitatively evaluate materials from an environmental perspective. The cone calorimeter was the primary tool used to screen 20 different material combinations from a fire performance perspective. It was found that textile covers of conventional fibres such as wool, cotton and polyester, can be improved by blending them with fire resistant speciality fibres. A new three‐dimensional web structure has been examined as an alternative padding material, showing preliminary promising fire properties with regard to ignition time, heat release rates and smoke production.  相似文献   
3.
A recent development in tactile technology enables an improvement in the appreciation of the visual arts for people with visual impairment (PVI). The tactile sense, in conjunction with, or a possibly as an alternative to, the auditory sense, would allow PVIs to approach artwork in a more self‐driven and engaging way that would be difficult to achieve with just an auditory stimulus. Tactile colour pictograms (TCPs), which are raised geometric patterns, are ideographic characters that are designed to enable PVIs to identify colours and interpret information by touch. In this article, three TCPs are introduced to code colours in the Munsell colour system. Each colour pattern consists of a basic cell size of 10 mm × 10 mm to represent the patterns consistently in terms of regular shape. Each TCP consists of basic geometric patterns that are combined to create primary, secondary, and tertiary colour pictograms of shapes indicating colour hue, intensity and lightness. Each TCP represents 29 colours including six hues; they were then further expanded to represent 53 colours. Two of them did not increase the cell size, the other increased the cell size 1.5 times for some colours, such as yellow‐orange, yellow, blue, and blue‐purple. Our proposed TCPs use a slightly larger cell size compared to most tactile patterns currently used to indicate colour, but code for more colours. With user experience and identification tests, conducted with 23 visually impaired adults, the effectiveness of the TCPs suggests that they were helpful for the participants.  相似文献   
4.
The esophagus is a tubular-shaped muscular organ where swallowed fluids and muscular contractions constitute a highly dynamic environment. The turbulent, coordinated processes that occur through the oropharyngeal conduit can often compromise targeted administration of therapeutic drugs to a lesion, significantly reducing therapeutic efficacy. Here, magnetically guidable drug vehicles capable of strongly adhering to target sites using a bioengineered mussel adhesive protein (MAP) to achieve localized delivery of therapeutic drugs against the hydrodynamic physiological conditions are proposed. A suite of highly uniform microparticles embedded with iron oxide (IO) nanoparticles (MAP@IO MPs) is microfluidically fabricated using the genipin-mediated covalent cross-linking of bioengineered MAP. The MAP@IO MPs are successfully targeted to a specific region and prolongedly retained in the tubular-structured passageway. In particular, orally administered MAP@IO MPs are effectively captured in the esophagus in vivo in a magnetically guidable manner. Moreover, doxorubicin (DOX)-loaded MAP@IO MPs exhibit a sustainable DOX release profile, effective anticancer therapeutic activity, and excellent biocompatibility. Thus, the magnetically guidable locomotion and robust underwater adhesive properties of the proteinaceous soft microbots can provide an intelligent modular approach for targeted locoregional therapeutics delivery to a specific lesion site in dynamic fluid-associated tubular organs such as the esophagus.  相似文献   
5.
6.
Polymer‐grafted inorganic particles (PGIPs) are attractive building blocks for numerous chemical and material applications. Surface‐initiated controlled radical polymerization (SI‐CRP) is the most feasible method to fabricate PGIPs. However, a conventional in‐batch reaction still suffers from several disadvantages, including time‐consuming purification processes, low grafting efficiency, and possible gelation problems. Herein, a facile method is demonstrated to synthesize block copolymer–grafted inorganic particles, that is, poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMEMA)‐b‐poly(N‐isopropylacrylamide) (PNIPAM)–grafted silica micro‐particles using continuous flow chemistry in an environmentally friendly aqueous media. Immobilizing the chain transfer agent and subsequent SI‐CRP can be accomplished sequentially in a continuous flow system, avoiding multi‐step purification processes in between. The chain length (MW) of the grafted polymers is tunable by adjusting the flow time or monomer concentration, and the narrower molar mass dispersity (Р< 1.4) of the grafted polymers reveals the uniform polymer chains on the particles. Moreover, compared with the in‐batch reaction at the same condition, the continuous system also suppresses possible gelation problems.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号