首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5588篇
  免费   456篇
  国内免费   8篇
电工技术   72篇
综合类   7篇
化学工业   1488篇
金属工艺   91篇
机械仪表   132篇
建筑科学   229篇
矿业工程   13篇
能源动力   222篇
轻工业   813篇
水利工程   45篇
石油天然气   10篇
无线电   363篇
一般工业技术   1136篇
冶金工业   375篇
原子能技术   34篇
自动化技术   1022篇
  2024年   14篇
  2023年   83篇
  2022年   64篇
  2021年   411篇
  2020年   197篇
  2019年   202篇
  2018年   244篇
  2017年   203篇
  2016年   288篇
  2015年   218篇
  2014年   326篇
  2013年   457篇
  2012年   389篇
  2011年   485篇
  2010年   343篇
  2009年   295篇
  2008年   334篇
  2007年   259篇
  2006年   176篇
  2005年   155篇
  2004年   132篇
  2003年   122篇
  2002年   89篇
  2001年   59篇
  2000年   49篇
  1999年   55篇
  1998年   44篇
  1997年   35篇
  1996年   48篇
  1995年   27篇
  1994年   23篇
  1993年   24篇
  1992年   29篇
  1991年   12篇
  1990年   7篇
  1989年   12篇
  1988年   12篇
  1987年   10篇
  1986年   8篇
  1985年   9篇
  1984年   16篇
  1983年   10篇
  1982年   13篇
  1981年   10篇
  1980年   5篇
  1979年   8篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1972年   4篇
排序方式: 共有6052条查询结果,搜索用时 31 毫秒
1.
A set of novel hydrazone derivatives were synthesized and analyzed for their biological activities. The compounds were tested for their inhibitory effect on the phosphorylating activity of the protein kinase CK2, and their antioxidant activity was also determined in three commonly used assays. The hydrazones were evaluated for their radical scavenging against the DPPH, ABTS and peroxyl radicals. Several compounds have been identified as good antioxidants as well as potent protein kinase CK2 inhibitors. Most hydrazones containing a 4-N(CH3)2 residue or perfluorinated phenyl rings showed high activity in the radical-scavenging assays and possess nanomolar IC50 values in the kinase assays.  相似文献   
2.
3.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
4.
Fullerenes are candidates for theranostic applications because of their high photodynamic activity and intrinsic multimodal imaging contrast. However, fullerenes suffer from low solubility in aqueous media, poor biocompatibility, cell toxicity, and a tendency to aggregate. C70@lysozyme is introduced herein as a novel bioconjugate that is harmless to a cellular environment, yet is also photoactive and has excellent optical and optoacoustic contrast for tracking cellular uptake and intracellular localization. The formation, water-solubility, photoactivity, and unperturbed structure of C70@lysozyme are confirmed using UV-visible and 2D 1H, 15N NMR spectroscopy. The excellent imaging contrast of C70@lysozyme in optoacoustic and third harmonic generation microscopy is exploited to monitor its uptake in HeLa cells and lysosomal trafficking. Last, the photoactivity of C70@lysozyme and its ability to initiate cell death by means of singlet oxygen (1O2) production upon exposure to low levels of white light irradiation is demonstrated. This study introduces C70@lysozyme and other fullerene-protein conjugates as potential candidates for theranostic applications.  相似文献   
5.
The pathophysiology of Polycystic Ovary Syndrome (PCOS) is quite complex and different mechanisms could contribute to hyperandrogenism and anovulation, which are the main features of the syndrome. Obesity and insulin-resistance are claimed as the principal factors contributing to the clinical presentation; in normal weight PCOS either, increased visceral adipose tissue has been described. However, their role is still debated, as debated are the biochemical markers linked to obesity per se. Oxidative stress (OS) and low-grade inflammation (LGI) have recently been a matter of researcher attention; they can influence each other in a reciprocal vicious cycle. In this review, we summarize the main mechanism of radical generation and the link with LGI. Furthermore, we discuss papers in favor or against the role of obesity as the first pathogenetic factor, and show how OS itself, on the contrary, can induce obesity and insulin resistance; in particular, the role of GH-IGF-1 axis is highlighted. Finally, the possible consequences on vitamin D synthesis and activation on the immune system are briefly discussed. This review intends to underline the key role of oxidative stress and low-grade inflammation in the physiopathology of PCOS, they can cause or worsen obesity, insulin-resistance, vitamin D deficiency, and immune dyscrasia, suggesting an inverse interaction to what is usually considered.  相似文献   
6.
The autonomic nervous system (ANS) plays a crucial role both in acute and chronic psychological stress eliciting changes in many local and systemic physiological and biochemical processes. Salivary secretion is also regulated by ANS. In this study, we explored salivary proteome changes produced in thirty-eight University students by a test stress, which simulated an oral exam. Students underwent a relaxation phase followed by the stress test during which an electrocardiogram was recorded. To evaluate the effect of an olfactory stimulus, half of the students were exposed to a pleasant odor diffused in the room throughout the whole session. Saliva samples were collected after the relaxation phase (T0) and the stress test (T1). State anxiety was also evaluated at T0 and T1. Salivary proteins were separated by two-dimensional electrophoresis, and patterns at different times were compared. Spots differentially expressed were trypsin digested and identified by mass spectrometry. Western blot analysis was used to validate proteomic results. Anxiety scores and heart rate changes indicated that the fake exam induced anxiety. Significant changes of α-amylase, polymeric immunoglobulin receptor (PIGR), and immunoglobulin α chain (IGHA) secretion were observed after the stress test was performed in the two conditions. Moreover, the presence of pleasant odor reduced the acute social stress affecting salivary proteome changes. Therefore, saliva proteomic analysis was a useful approach to evaluate the rapid responses associated to an acute stress test also highlighting known biomarkers.  相似文献   
7.
8.
The rapid development of the science and technology of organic semiconductors has already led to mass application of organic light‐emitting diodes (OLEDs) in television monitors of outstanding quality as well as in a large variety of smaller displays found in smartphones, tablets, and other gadgets, while introduction of the technology to the illumination sector is imminent. Notably, the requirements of all such applications for emission in the visible range of the electromagnetic spectrum are well tuned to the optical and electronic properties of typical organic semiconductors, thereby representing relatively “low‐hanging fruits,” in terms of material development and exploitation. However, the question arises as to whether developing materials suited for efficient near‐infrared (NIR, 700–1000 nm) emission is possible, and, crucially, desirable to enable new classes of applications spanning from through‐space, short‐range communications to biomedical sensors, night vision, and more generally security applications to name but a few. Here, the major fundamental hurdles to be overcome to achieve efficient NIR emission from organic π‐conjugated systems are discussed, recent progress is reviewed, and an outlook for further development of both materials and applications is provided.  相似文献   
9.
Background: Injury of the trigeminal nerve in oral and maxillofacial surgery can occur. Schwann cell mitochondria are regulators in the development, maintenance and regeneration of peripheral nerve axons. Evidence shows that after the nerve injury, mitochondrial bioenergetic dysfunction occurs and is associated with pain, neuropathy and nerve regeneration deficit. A challenge for research is to individuate new therapies able to normalise mitochondrial and energetic metabolism to aid nerve recovery after damage. Photobiomodulation therapy can be an interesting candidate, because it is a technique involving cell manipulation through the photonic energy of a non-ionising light source (visible and NIR light), which produces a nonthermal therapeutic effect on the stressed tissue. Methods: The review was based on the following questions: (1) Can photo-biomodulation by red and NIR light affect mitochondrial bioenergetics? (2) Can photobiomodulation support damage to the trigeminal nerve branches? (preclinical and clinical studies), and, if yes, (3) What is the best photobiomodulatory therapy for the recovery of the trigeminal nerve branches? The papers were searched using the PubMed, Scopus and Cochrane databases. This review followed the ARRIVE-2.0, PRISMA and Cochrane RoB-2 guidelines. Results and conclusions: The reliability of photobiomodulatory event strongly bases on biological and physical-chemical evidence. Its principal player is the mitochondrion, whether its cytochromes are directly involved as a photoacceptor or indirectly through a vibrational and energetic variation of bound water: water as the photoacceptor. The 808-nm and 100 J/cm2 (0.07 W; 2.5 W/cm2; pulsed 50 Hz; 27 J per point; 80 s) on rats and 800-nm and 0.2 W/cm2 (0.2 W; 12 J/cm2; 12 J per point; 60 s, CW) on humans resulted as trustworthy therapies, which could be supported by extensive studies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号