首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   10篇
  国内免费   1篇
石油天然气   23篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
排序方式: 共有23条查询结果,搜索用时 17 毫秒
1.
沙湾凹陷周缘天然气混源现象普遍,前期缺少对地区的整体研究,制约了研究区天然气成藏研究。为此,系统开展了天然气地球化学特征分析,结合烃源岩热模拟技术,明确研究区中、浅层天然气的成因。研究显示,沙湾凹陷周缘中、浅层天然气以甲烷为主,干燥系数分布在0.73~1.00,δ13C1值分布在-56.0 ‰~-31.5 ‰,反映研究区成熟与高-过成熟天然气共存;δ13C2值分布在-30.4 ‰~-22.8 ‰,反映研究区煤型气、油型气和混合型气均有分布。结合烃源岩热解气碳同位素特征,认为研究区天然气具有4种成因类型:Ⅰ类天然气来源于佳木河组烃源岩,主要分布在红车断裂带中段白垩系,具有极重的δ13C2值,大于-25.5 ‰,C7轻烃中甲基环己烷含量大于50 %;Ⅱ类天然气分布少,主要为原油降解次生生物气,具有异常偏负δ13C1值和极高的干燥系数;Ⅲ类天然气来源于下乌尔禾组烃源岩,主要分布在小拐地区及红车断裂带南段侏罗系,δ13C2值分布在-27.9 ‰~-26.4 ‰,具有混合型烃源岩特征;Ⅳ类天然气为下乌尔禾组烃源岩与风城组烃源岩混源,主要分布在红车断裂带南段、北段及金龙地区,以下乌尔禾组来源为主的天然气δ13C2值大于-29 ‰,以风城组来源为主的天然气δ13C2值小于-29 ‰。  相似文献   
2.
以岩性特征差异对混积岩储层孔隙成因的影响作用为主线,从岩石组构与颗粒堆积学的关系角度分析孔隙的成因和特征。研究认为:(1)基于水动力条件、矿物组合和岩石结构特征,并以碎屑颗粒、黏土矿物和碳酸盐类矿物三端元作为划分依据,芦草沟组“甜点”岩性主要有凝灰质砂屑云岩、凝灰质长石岩屑粉细砂岩、凝灰质云屑砂岩及凝灰质云质粉砂岩。混积岩主要为母源混合成因,并且垂向上各类型混积岩层可互层叠置而形成相缘混合。(2)基于颗粒的球形堆积模型,当碎屑颗粒含量低于52.4%时,孔隙度随颗粒含量的增加而减小;当碎屑颗粒含量达到52.4%时,如果碎屑颗粒含量继续增加,粒间孔隙将大量出现,孔隙度将快速增大,逐渐演变为常规的砂岩储层。(3)根据碎屑颗粒、黏土矿物和碳酸盐类矿物三种端元组分与孔隙类型的关系,芦草沟组混积岩的孔隙类型可以划分为粒间孔、粒内溶孔和晶间孔,凝灰质砂屑云岩、凝灰质长石岩屑粉细砂岩的孔隙类型以颗粒支撑的粒间孔和粒内溶孔为主,而凝灰质云屑砂岩及凝灰质云质粉砂岩以晶间孔较发育为特征。混积岩优质储层的发育主要受碎屑颗粒组分含量控制,易溶碎屑组分含量及溶蚀作用对储层物性具有改善作用。   相似文献   
3.
为研究生物降解对原油中极性化合物组成影响,采用傅立叶变换离子回旋共振质谱分析技术,研究了准噶尔盆地三台—北三台地区生物降解稠油中极性大分子化合物的组成。结果显示,生物降解稠油中含杂原子化合物类型较为复杂,主要有N1、N1O1、N1O2、O1、O1S1、O2、O2S1、O3、O3S1和O4;不同生物降解程度稠油中极性化合物组成具有明显差异,随着生物降解作用加剧,稠油中O2类化合物相对丰度明显升高,N1、O1S1、O2S1、O3、O3S1和O4类化合物呈现逐渐降低的变化规律。通过对极性化合物中相对丰度较高的N1和O2类化合物的分析发现,随着生物降解程度增大,N1和O2类极性化合物缩合度整体增高,指示高缩合度的极性化合物抗生物降解能力更强,更易富集,长烷基支链取代化合物更易被生物降解。在严重生物降解稠油中,O2类极性化合物相对丰度最高,其中酸性组分以一环至四环环烷酸(分子缩合度DBE为2~5)为主。傅立叶变换离子回旋共振质谱分析技术具有超高质量分辨分析能力,可以从分子层次研究原油中极性大分子化合物的化学组成,为石油地球化学研究提供了新的技术手段。   相似文献   
4.
油气藏开采过程中出现的井壁沉淀物会产生一系列地质和工程问题。以中国陆上油气勘探最近取得重大突破的准噶尔盆地南缘高探1井为例,针对高温高压条件下原油开采过程中井壁出现的大量黑色固体不溶沉淀物,通过对该沉淀物进行系统的岩石学和地球化学分析,包括族组分、气相色谱、液相色谱、含蜡量及热解实验等,明确了沉淀物的组成,进而探讨了其成因与意义。结果表明,高探1井井壁沉淀物由可溶有机质和泥粉砂质组成,其中可溶有机质主要由沥青质组成,泥粉砂质以细粉砂为主。高探1井原油开采过程中,从地层到井筒,温度和压力迅速下降,其轻质组分优先分逸流出,原油动态稳定体系被破坏,造成溶解于原油中的沥青质析出、絮凝,并吸附在井壁上,在此过程中,井底的泥沙随流体流动混入沥青析出物中,一起长大堆积。这可能是高温高压条件下油气开采过程的普遍现象,需筛选强极性沥青分散剂来增加原油体系稳定性,对已结垢的井筒采用强极性试剂进行化学清洗,增加井底滤网,减少砂泥固体颗粒。   相似文献   
5.
准噶尔盆地吉木萨尔凹陷中二叠统芦草沟组源储一体,岩心样品中常见原油浸染现象,导致烃源岩评价参数测定不准。针对这种现象,利用氯仿抽提技术,分析了运移烃类对烃源岩评价结果的影响,细分岩性准确评价了该区芦草沟组源储一体烃源岩的生烃潜力。结果显示:(1)烃源岩中可溶有机质烃类含量越高,会导致烃源岩有机碳测定值偏差越高,热解参数S1、S2值增大,Tmax值降低,氢指数增大,对于源储一体烃源岩应先进行氯仿抽提,再进行热解分析。(2)吉木萨尔凹陷芦草沟组烃源岩以泥岩类有机质丰度最高,属于好—最好的生油岩,其次为白云岩类,属于好的生油岩,灰岩属于中等—好的生油岩,粉砂岩类主要为差生油岩;烃源岩有机质类型以Ⅰ型、Ⅱ1型、Ⅱ2为主,少量Ⅲ型,整体达到成熟大量生油阶段。抽提后的烃源岩有机碳含量、氢指数及Tmax值,可有效用于源储一体烃源岩及油浸烃源岩的准确评价。   相似文献   
6.
利用色谱/质谱/质谱方法分析了准噶尔盆地不同密度原油中金刚烷化合物的含量,探讨了族组分分离法和直接进样法2种前处理方法对金刚烷化合物测定的影响。族组分分离法会造成原油中金刚烷类化合物含量损失,特别是密度相对小的单金刚烷类损失更大,但族组分分离方法有利于低熟原油中低含量、受挥发作用影响较小的双金刚烷类化合物的富集,更有利于仪器检出。族组分分离法对金刚烷异构化指标影响较小,对应用更为重要的浓度指标影响较大,因此在进行金刚烷类化合物分析时应尽量避免复杂的前处理,减少金刚烷类化合物的损失。选择直接进样法是测定正常油、轻质油和凝析油中金刚烷类化合物的最佳前处理方法,对于部分低熟原油样品可考虑使用族组分分离法进行处理。   相似文献   
7.
利用色谱/质谱/质谱方法分析了准噶尔盆地腹部地区原油中金刚烷化合物的含量,探讨了金刚烷参数指标在腹部地区原油类型划分和成熟度判识中的适用性。腹部地区原油中金刚烷类化合物含量较低,主要分布在(200~500)×10-6。利用金刚烷类化合物浓度指标能够有效划分原油的类型,金刚烷异构化指标能够有效判识原油的成熟度。腹部地区原油主要分为两大类:Ⅰ类原油为早期相对低熟原油,金刚烷类化合物含量低,单金刚烷含量相对较高,浓度指标A/1-MA比值分布在0.50~0.71,成熟度指标MAI值较小,在0.41~0.50之间,主要分布在远离生烃凹陷区域;Ⅱ类原油为晚期相对高熟油,金刚烷类化合物含量较高,1-甲基单金刚烷含量较高,A/1-MA比值分布在0.30~0.37,MAI值在0.52~0.69之间,主要分布在生烃凹陷内,其分布格局与油气运移方向一致,即晚期充注的原油驱动早期充注的原油向远离生烃凹陷处运移,证实了腹部原油运移方向为盆1井西凹陷向北运移。   相似文献   
8.
针对准噶尔盆地沙湾凹陷周缘上古生界天然气成因与来源认识不清的问题,运用烃源岩热解气模拟实验技术,根据热解气碳同位素分布,结合天然气组分、碳同位素、轻烃组成及伴生原油地球化学特征,揭示了沙湾凹陷周缘上古生界天然气成因与来源.研究结果表明:研究区天然气具有6种成因类型,Ⅰ类天然气来源于佳木河组烃源岩,δ13 C2值大于-2...  相似文献   
9.
采用国产10X和13X型分子筛对甾烷和藿烷类生物标志物进行吸附和脱附实验,探讨两种分子筛在制备甾烷和藿烷类化合物过程中的稳定碳同位素分馏效应,为甾烷和藿烷单体化合物的分离技术提供一种可靠方法。结果表明,两种分子筛对不同类型化合物的吸附作用不同,对甾烷化合物中的5α,14α,17α-20S、5α,14β,17β-20R、5α,14β,17β-20S三种构型吸附能力最弱,其次是5α,14α,17α-20R构型的甾烷系列、β-胡萝卜烷和伽马蜡烷。13X型分子筛对藿烷组分吸附能力强于10X型分子筛,可用于藿烷类化合物的分离;而10X型分子筛对甾烷组分吸附能力强于13X型分子筛。通过控制淋洗液的用量,能够分别分离不同构型的甾烷化合物。获得的甾烷和藿烷化合物单体烃稳定碳同位素分析结果显示,分离过程中无碳同位素分馏现象,重复性非常好,说明国产10X和13X型分子筛可用于甾烷和藿烷类化合物的分离富集及其单体烃碳同位素研究。   相似文献   
10.
通过分析准噶尔盆地莫索湾地区白垩系油藏原油25?降藿烷含量、烃类包裹体的均一温度及组分特征、地层埋藏史及热演化史,探讨了研究区生物降解分布、地点及时间,结合生物降解与未降解原油混合实验,揭示了不同期次油藏保存规模。结果表明:准噶尔盆地莫索湾地区白垩系普遍存在生物降解,纵向上生物降解受白垩系底部不整合面控制,导致垂向分布存在差异。油气存在2期成藏,早期成藏从早白垩世开始充注,并发生严重的本地生物降解,降解时间为早白垩世末—晚白垩世早期,受烃源岩排烃规模限制,第一期成藏油气规模小,对后期聚集的主成藏期油气破坏较小;第二期成藏为主成藏期,成藏时间对应下乌尔禾组大规模排烃期,即晚白垩世。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号