首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   5篇
综合类   1篇
化学工业   2篇
武器工业   5篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
排序方式: 共有8条查询结果,搜索用时 671 毫秒
1
1.
一锅法合成2,4,5-三硝基咪唑(英)   总被引:2,自引:2,他引:0  
以4-硝基咪唑为原料,用HNO3/KI/AcO H作为硝化体系,通过一锅法制备了2,4,5-三硝基咪唑,用1H N M R,IR,M S以及元素分析对其结构进行了表征。优化了反应路线,结果表明,在反应时间4 h,反应温度为120℃,n(4-硝基咪唑)∶n(65%HN O3)∶n(AcO H)=1∶30∶30条件下,目标化合物产率高达80.6%。  相似文献   
2.
溶剂/非溶剂法制备球形硝基胍   总被引:1,自引:0,他引:1  
以N-甲基吡咯烷酮为溶剂,丙酮为非溶剂,硝酸镍为添加剂,采用溶剂/非溶剂法将堆积密度较低的针状硝基胍重结晶制备成堆积密度较高的球形硝基胍。采用扫描电镜(SEM)和差示扫描量热法(DSC)分析了球形硝基胍的晶体形貌和热性能。讨论了影响硝基胍堆积密度的主要因素,确定了制备较高堆积密度的球形硝基胍的工艺条件。结果表明,在温度为80℃,溶剂与非溶剂体积比为1∶3,添加剂质量分数为0.005%,搅拌速率为400r/min的条件下,制备的球形硝基胍堆积密度最大,为1.08g/cm3,球形硝基胍的热分解温度较文献值略有提高。  相似文献   
3.
用TG-DTG-DSC方法研究富氮含能化合物3,7-二硝亚氨基-2,4,6,8-四氮杂双环[3.3.0]辛烷的热性能,用量子化学方法研究其电子结构及爆轰性能。结果表明,3,7-二硝亚氨基-2,4,6,8-四氮杂双环[3.3.0]辛烷热分解是一个二阶段过程,在320 ℃左右有一个剧烈的放热峰。其热分解活化能和指前因子分别为225.80 kJ·mol-1和10 17.71 s-1。考虑到其热爆炸临界温度为600.25 K,活化熵为80.18 J·mol-1·k-1,活化焓为220.92 kJ·mol-1,吉布斯自由能为173.87 kJ·mol-1。利用K-J公式得到其爆速为8.70 km·s-1, 爆压为34.34 GPa,表明3,7-二硝亚氨基-2,4,6,8-四氮杂双环[3.3.0]辛烷可用作潜在的高能、稳定的含能材料的候选物。  相似文献   
4.
设计了一种新型高氮含能材料——2,6-二叠氮亚氨基-1,3,4,5,7,8-六叠氮基-八氢化二咪唑[4,5-b:4',5'-e]吡嗪。运用密度泛函理论,在B3LYP/6-31G(d,p)理论水平上对目标化合物进行了结构优化。基于优化结构,计算得到标题化合物的红外光谱;通过键级分析获得该化合物最可能引发热分解反应的化学键位置,并计算其键离解能;设计等键反应计算得到该化合物的标准摩尔生成焓;通过Kamlet-Jacobs公式预测了该化合物的爆速和爆压;通过逆合成分析设计了OAIP的合成路线。  相似文献   
5.
3,6-二胍基-1,2,4,5-四嗪二硝基胍盐的合成及性能预估   总被引:1,自引:0,他引:1  
以水合肼、硝酸胍以及硝基胍为原料,制备了3,6-二胍基-1,2,4,5-四嗪二硝基胍盐并优化了反应条件。用DSC和TG-DTG研究了其热分解行为,运用密度泛函理论(DFT),在B3LYP/6-31+G**理论水平下预估了其爆轰性能。结果表明,在反应时间为4h,反应温度为50℃的优化合成条件下,目标化合物产率最高为82.2%。该化合物在260℃左右剧烈分解,表明其具有良好的热稳定性。用Born-Haber循环求得该化合物的生成热为294.9kJ/mol。用Monte-Carlo方法预估该化合物的理论密度为1.69g/cm3。用Kamlet-Jacobs公式计算出该化合物的爆速为7.67km/s,爆压为25.04GPa,表明3,6-二胍基-1,2,4,5-四嗪二硝基胍盐具有优越的爆轰性能。  相似文献   
6.
1-氨基-2-硝基胍4-硝胺基-1,2,4-三唑盐的合成及性能   总被引:2,自引:2,他引:0  
以1-氨基-2-硝基胍和4-硝胺基-1,2,4-三唑为原料,制备了一种新型含能离子盐——1-氨基-2-硝基胍4-硝胺基-1,2,4-三唑盐,并优化了反应条件。用TG-DSC研究了其热分解行为。结果表明,在反应时间为4h,反应温度为50℃的优化合成条件下,1-氨基-2-硝基胍4-硝胺基-1,2,4-三唑盐的产率最高为86.5%。该化合物在175.5℃左右剧烈分解,显示热稳定性较好。利用BornHaber循环求得该化合物的生成热为551.3kJ·mol-1。测得该化合物的密度为1.59g·cm-3。基于密度和生成热,通过Kamlet-Jacobs公式得到该化合物的爆速和爆压分别为8.05km·s-1和爆压26.6GPa。  相似文献   
7.
以二硝基甘胍为原料,乙酸酐为酰化试剂,经酰化及硝化反应得到一种新型高能量密度化合物2,6-二硝基-3,7-二硝亚胺基-2,4,6,8-四氮杂双环[3.3.0]辛烷(四硝基甘胍,TNGG),并对其结构进行了表征。研究了影响TNGG产率的因素,并通过热重分析-差示扫描量热分析(TG-DSC)研究了其热分解行为,基于密度并结合等键反应及Kamlet-Jacobs公式计算得到该化合物的爆轰性能。结果表明,在反应时间为15 min,温度为25℃,98%发烟硝酸/P_2O_5硝化体系下,TNGG的产率最高,为31.3%。该化合物热分解过程在700℃内完成,整个过程失重约为100%,热分解峰温为182.6℃,热稳定性较好。理论计算结果表明,TNGG水解稳定性优于四硝基甘脲(TNGU)。TNGG的理论爆速为9.76 km·s~(-1),爆压为44.0 GPa,优于RDX和HMX。  相似文献   
8.
以硝基胍(NQ)为原料、100%硝酸/20%发烟硫酸/硝酸铵为硝化体系,经硝化反应合成了1,2-二硝基胍(DNG)。用IR、1H NMR、13C NMR、MS表征了DNG的结构。研究了影响DNG产率和正交实验的因素。用TG和 DSC研究了DNG的热分解行为。结果表明,硝化反应的优化条件为n(HNO3)n(NQ)n(NH4NO3)=15 2 1,V(H2SO4)V(HNO3)=1.25 1,反应时间为8 h,反应温度为10 ℃。优化条件下DNG产率达61.76%。DNG的 DSC曲线峰温为182.83 ℃,显示DNG有良好的热稳定性。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号