首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   2篇
无线电   2篇
  2011年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
A 5GHz low power direct conversion receiver radio frequency front-end with balun LNA is presented. A hybrid common gate and common source structure balun LNA is adopted, and the capacitive cross-coupling technique is used to reduce the noise contribution of the common source transistor. To obtain low 1/f noise and high linearity, a current mode passive mixer is preferred and realized. A current mode switching scheme can switch between high and low gain modes, and meanwhile it can not only perform good linearity but save power consumption at low gain mode. The front-end chip is manufactured on a 0.13-μm CMOS process and occupies an active chip area of 1.2 mm2. It achieves 35 dB conversion gain across 4.9-5.1 GHz, a noise figure of 7.2 dB and an IIP3 of -16.8 dBm, while consuming 28.4 mA from a 1.2 V power supply at high gain mode. Its conversion gain is 13 dB with an IIP3 of 5.2 dBm and consumes 21.5 mA at low gain mode.  相似文献   
2.
A 5GHz low power direct conversion receiver radio frequency front-end with balun LNA is presented. A hybrid common gate and common source structure balun LNA is adopted,and the capacitive cross-coupling technique is used to reduce the noise contribution of the common source transistor.To obtain low l/f noise and high linearity,a current mode passive mixer is preferred and realized.A current mode switching scheme can switch between high and low gain modes,and meanwhile it can not only perform good linearity but save power consumption at low gain mode.The front-end chip is manufactured on a 0.13-μm CMOS process and occupies an active chip area of 1.2 mm~2.It achieves 35 dB conversion gain across 4.9-5.1 GHz,a noise figure of 7.2 dB and an IIP3 of -16.8 dBm,while consuming 28.4 mA from a 1.2 V power supply at high gain mode.Its conversion gain is 13 dB with an IIP3 of 5.2 dBm and consumes 21.5 mA at low gain mode.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号