首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A 5GHz low power direct conversion receiver radio frequency front-end with balun LNA is presented. A hybrid common gate and common source structure balun LNA is adopted,and the capacitive cross-coupling technique is used to reduce the noise contribution of the common source transistor.To obtain low l/f noise and high linearity,a current mode passive mixer is preferred and realized.A current mode switching scheme can switch between high and low gain modes,and meanwhile it can not only perform good linearity but save power consumption at low gain mode.The front-end chip is manufactured on a 0.13-μm CMOS process and occupies an active chip area of 1.2 mm~2.It achieves 35 dB conversion gain across 4.9-5.1 GHz,a noise figure of 7.2 dB and an IIP3 of -16.8 dBm,while consuming 28.4 mA from a 1.2 V power supply at high gain mode.Its conversion gain is 13 dB with an IIP3 of 5.2 dBm and consumes 21.5 mA at low gain mode.  相似文献   

2.
徐化  王磊  石寅  代伐 《半导体学报》2011,32(9):93-98
A 2.4 GHz low-power,low-noise and highly linear receiver front-end with a low noise amplifier(LNA) and balun optimization is presented.Direct conversion architecture is employed for this front-end.The on-chip balun is designed for single-to-differential conversion between the LNA and the down-conversion mixer,and is optimized for the best noise performance of the front-end.The circuit is implemented with 0.35μm SiGe BiCMOS technology.The front-end has three gain steps for maximization of the input dynamic range.The overall maximum gain is about 36 dB.The double-sideband noise figure is 3.8 dB in high gain mode and the input referred third-order intercept point is 12.5 dBm in low gain mode.The down-conversion mixer has a tunable parallel R-C load at the output and an emitter follower is used as the output stage for testing purposes.The total front-end dissipation is 33 mW under a 2.85 V supply and occupies a 0.66 mm~2 die size.  相似文献   

3.
赵锦鑫  胡雪青  石寅  王磊 《半导体学报》2011,32(10):120-125
This paper presents a fully integrated RF front-end with an automatic gain control(AGC) scheme and a digitally controlled radio frequency varied gain amplifier(RFVGA) for a U/V band China Mobile Multimedia Broadcasting(CMMB) direct conversion receiver.The RFVGA provides a gain range of 50 dB with a 1.6 dB step. The adopted AGC strategy could improve immunity to adjacent channel signal,which is of importance for CMMB application.The front-end,composed of a low noise amplifier(LNA),an RFVGA,a mixer and AGC,achieves an input referred 3rd order intercept point(IIP3) of 4.9 dBm with the LNA in low gain mode and the RFVGA in medium gain mode,and a less than 4 dB double side band noise figure with both the LNA and the RFVGA in high gain mode.The proposed RF front-end is fabricated in a 0.35μm SiGe BiCMOS technology and consumes 25.6 mA from a 3.0 V power supply.  相似文献   

4.
A wideband CMOS variable gain low noise amplifier(VGLNA) based on a single-to-differential(S2D) stage and resistive attenuator is presented for TV tuner applications.Detailed analysis of input matching,noise figure(NF) and linearity for S2D is given.A highly linear passive resistive attenuator is proposed to provide 6 dB attenuation and input matching for each gain stage.The chip was fabricated by a 0.18μm 1P6M CMOS process, and the measurements show that the VGLNA covers a gain range over 36.4 dB and achieves a maximum gain of 21.3 dB,a minimum NF of 3.0 dB,an IIP3 of 0.9 dBm and an IIP2 of 26.3 dBm at high gain mode with a power consumption less than 10 mA from a 1.8 V supply.  相似文献   

5.
This paper presents the design of an ultralow power receiver front-end designed for a wireless sensor network (WSN) in a 0.18 μm CMOS process. The author designs two front-ends working in the saturation region and the subthreshold region respectively. The front-ends contain a two-stage cross-coupling cascaded common-gate (CG) LNA and a quadrature Gilbert IQ mixer. The measured conversion gain is variable with high gain at 24 dB and low gain at 7 dB for the saturation one, and high gain at 22 dB and low gain at 5 dB for the subthreshold one. The noise figure (NF) at high gain mode is 5.1 dB and 6.3 dB for each. The input 1 dB compression point (IPldB) at low gain mode is about -6 dBm and -3 dBm for each. The front-ends consume about 2.1 mA current from 1.8 V power supply for the saturation one and 1.3 mA current for the subthreshold one. The measured results show that, comparing with the power consumption saving, it is worth making sacrifices on the performance for using the subthreshold technology.  相似文献   

6.
A new,low complexity,ultra-wideband 3.1-10.6 GHz low noise amplifier(LNA),designed in a chartered 0.18μm RFCMOS technology,is presented.The ultra-wideband LNA consists of only two simple amplifiers with an inter-stage inductor connected.The first stage utilizing a resistive current reuse and dual inductive degeneration technique is used to attain a wideband input matching and low noise figure.A common source amplifier with an inductive peaking technique as the second stage achieves high flat gain and wide -3 dB bandwidth of the overall amplifier simultaneously.The implemented ultra-wideband LNA presents a maximum power gain of 15.6 dB,and a high reverse isolation of—45 dB,and good input/output return losses are better than -10 dB in the frequency range of 3.1-10.6 GHz.An excellent noise figure(NF) of 2.8-4.7 dB was obtained in the required band with a power dissipation of 14.1 mW under a supply voltage of 1.5 V.An input-referred third-order intercept point(IIP3) is -7.1 dBm at 6 GHz.The chip area,including testing pads,is only 0.8×0.9 mm2.  相似文献   

7.
A 1.34 GHz-1=60 MHz low noise amplifier (LNA) designed in a 0.35 pm SiGe process is presented. The designed LNA exhibits a power gain of 21.46 dB and a noise figure (NF) of 1.27 dB at 1.34 GHz. The linearity is improved with an active biasing technique. The post-layout simulation shows an input referred 1-dB compression point (IPldn) of-11.52 dBm. Compared with the recent reported high gain LNAs, the proposed LNA has a much better linearity without degrading other performance. The LNA draws 10 mA current from a 3.3 V power supply.  相似文献   

8.
A low power high gain gain-controlled LNA + mixer for GNSS receivers is reported. The high gain LNA is realized with a current source load. Its gain-controlled ability is achieved using a programmable bias circuit. Taking advantage of the high gain LNA, a high noise figure passive mixer is adopted. With the passive mixer, low power consumption and high voltage gain of the LNA + mixer are achieved. To fully investigate the performance of this circuit, comparisons between a conventional LNA + mixer, a previous low power LNA + mixer, and the proposed LNA + mixer are presented. The circuit is implemented in 0.18 #m mixed-signal CMOS technology. A 3.8 dB noise figure, an overall 45 dB converge gain and a 10 dB controlled gain range of the two stages are measured. The chip occupies 0.24 mm2 and consumes 2 mA current under 1.8 V supply.  相似文献   

9.
An integrated fully differential ultra-wideband CMOS RF front-end for 6-9 GHz is presented.A resistive feedback low noise amplifier and a gain controllable IQ merged folded quadrature mixer are integrated as the RF front-end. The ESD protected chip is fabricated in a TSMC 0.13μm RF CMOS process and achieves a maximum voltage gain of 23-26 dB and a minimum voltage gain of 16-19 dB,an averaged total noise figure of 3.3-4.6 dB while operating in the high gain mode and an in-band IIP3 of-12.6 dBm while in th...  相似文献   

10.
A wideband large dynamic range and high linearity U-band RF front-end for mobile DTV is introduced,and includes a noise-cancelling low-noise amplifier(LNA),an RF programmable gain amplifier(RFPGA) and a current communicating passive mixer.The noise/distortion cancelling structure and RC post-distortion compensation are employed to improve the linearity of the LNA.An RFPGA with five stages provides large dynamic range and fine gain resolution.A simple resistor voltage network in the passive mixer decreases the gate bias voltage of the mixing transistor,and optimum linearity and symmetrical mixing is obtained at the same time.The RF front-end is implemented in a 0.25 μm CMOS process.Tests show that it achieves an ⅡP3(third-order intercept point) of –17 dBm,a conversion gain of 39 dB,and a noise figure of 5.8 dB.The RFPGA achieves a dynamic range of –36.2 to 23.5 dB with a resolution of 0.32 dB.  相似文献   

11.
新型电流控制电流传输器   总被引:1,自引:0,他引:1  
提出了一种新型电流控制电流传输器(CCCII)电路。该CCCII电路由跨导线性环电路和双极性Wilson电流镜构成。为实现该新型CCCII电路,还提出了双端输出的双极型Wilson电流镜。该CCCII电路具有输出阻抗高、电压及电流传输精度高、易于实现、便于集成等优点。文中分析了电路的工作原理,给出了实验结果,验证了电路的正确性。  相似文献   

12.
一种高精度电流检测电路的设计   总被引:1,自引:0,他引:1  
针对常用电流模式的升压转换器结构,提出了一种高精度电流检测电路。该电路在保证响应速度的前提下,通过增加电路环路增益,降低误差源等方法,提高检测电路的电流检测精度。与其他结构电路相比,有结构简单,响应速度快,电流检测精度高的优点。基于Chartered的0.35μm的3.3V/13.5V CMOS工艺,使用Spectre仿真器,对该电路进行了仿真与验证。结果证明,在输入电压为2.5V~5.5V,电感电流为100mA~500mA,工作频率为1MHz的情况下,能够正常稳定工作,并且电流精度高达93%。  相似文献   

13.
为了实现结构简单、便于集成的三输入单输出电流模式滤波器,提出了三输入单输出电流模式滤波器的信号流图。用CC(第二代电流传输器)及多端输出的电流镜实现了该信号流图,得到一个由CC及电流镜共同构成的电流模式滤波器。该滤波器由2个CC、1个三端输出的电流镜及4个RC元件构成,能方便地实现5种滤波器输出。该滤波器可用于通信、电子测量与仪器仪表中的信号处理。硬件实验结果表明提出的电路是正确的。  相似文献   

14.
为了实现结构简单、便于集成的三输入单输出电流模式滤波器,提出了三输入单输出电流模式滤波器的信号流图。用CCⅡ(第二代电流传输器)及多端输出的电流镜实现了该信号流图,得到一个由CCⅡ及电流镜共同构成的电流模式滤波器。该滤波器由2个CCⅡ、1个三端输出的电流镜及4个RC元件构成,能方便地实现5种滤波器输出。该滤波器可用于通信、电子测量与仪器仪表中的信号处理。硬件实验结果表明提出的电路是正确的。  相似文献   

15.
The definition of the current conveyor is reviewed and a multiple-output second generation current conveyor (CCII) is shown to combine the different generations of current conveyors presently existing. Next, noise sources are introduced, and a general noise model for the current conveyor is described. This model is used for the analysis of selected examples of current conveyor based operational amplifier configurations and the noise performance of these configurations is compared. Finally, the noise model is developed for a CMOS current conveyor implementation, and approaches to an optimization of the noise performance are discussed. It is concluded that a class AB implementation can yield a lower noise output for the same dynamic range than a class A implementation. For both the class A implementation and the class AB implementation it is essential to design low noise current mirrors and current sources, and with the class AB design, the current mirror and current source noise can be reduced by using small values of bias current without compromising the maximum available output current.  相似文献   

16.
A novel sinusoidal oscillator, constructed from only one CCII with variable current gain, is presented and analyzed. The oscillator provides electronically tunable frequency, with good stability and low sensitivities, while variation of current gain does not affect the condition of oscillations. By the proposed circuit topology, the parasitic elements which exist at current conveyor terminals are absorbed by the external components and their action is diminished. Moreover, the parasitic poles of the current conveyor are taken into account and compensation technique and design criteria are applied, so that the oscillator can operate above 35 MHz.  相似文献   

17.
设计了一种用于高压Boost电路的电流采样电路。利用SenseFET采样原理,设计了高增益、大带宽的源极输入共源共栅运放,保证了采样电路的高采样精度和快响应速度。设计了延时单元,只在功率管开启时起作用,在功率管关断时无效,保证采样结构在功率管开启时不偏离工作点,并能消除此时的采样输出电流尖峰。在0.35 μm 40 V BCD工艺下对电路进行仿真验证。结果显示,该采样电路的采样精度可达到99.64%,且采样电流尖峰明显降低。  相似文献   

18.
曾菊员 《电子科技》2014,27(7):64-66,70
提出了一种基于运算跨导放大器和第二代电流传输器结合的电流模式多功能滤波器方法。该方法是将高阶通用电流模式滤波器的传递函数分解为n个无损积分器级联的形式,适当选定输入电流信号可同时实现低通、高通、带通、带阻等滤波功能,而电路内部结构及器件数目无需改变。与同类电路相比,其设计简便、结构简单、无源元件全部接地,且易于集成。同时文中还给出了滤波器的设计实例,Pspice仿真结果与理论分析相吻合,也验证了该方法的可行性。该滤波器可用于通信、电子测量与仪器仪表的信号处理中。  相似文献   

19.
提出了一种改进的高分辨精度的CMOS电流型排序电路.该电路不需要偏置信号,简化了系统设计.其电路结构简单,便于扩展.利用平均值电路、减法电路、WTA电路和控制电路,可以使该排序电路在大输入电流下依然保持高性能.它已经采用0.8μm标准CMOS工艺成功制作.芯片面积为2.38mm×2.00mm(核心电路面积仅为1.12mm×0.52mm).测试结果表明该排序电路动态范围大、分辨精度高、准确度好、功耗低,可以广泛地应用于中值滤波、模式识别、神经网络、模糊逻辑等信号处理领域,具有很高的应用价值.  相似文献   

20.
In this paper, a four-quadrant current-mode multiplier based on a new squarer cell is proposed. The multiplier has a simple core, wide input current range with low power consumption, and it can easily be converted to a voltage-mode by using a balanced output transconductor (BOTA) [1]. The proposed four-quadrant current-mode and voltage-mode multipliers were confirmed by using PSPICE simulation and found to have good linearity with wide input dynamic range. For the proposed current-mode multiplier, the static power consumption is 0.671 mW, the maximum power consumption is 0.72 mW, the input current range is ± 60 μ A, the bandwidth is 31 MHz, the input referred noise current is 46 pA/√Hz, and the maximum linearity error is 3.9%. For the proposed voltage-mode multiplier, the static power consumption is 1.6 mW, the maximum power consumption is 1.85 mW, the input voltage range is ± 1V from ± 1.5V supply, the bandwidth is 25.34 MHz, the input referred noise voltage is 0.85 μV/√Hz, and the maximum linearity error is 4.1%. Mohammed A. Hashiesh was born in Elkharga, New Valley, Egypt, in 1979. He received the B.Sc. degree with honors from the Electrical Engineering Department, Cairo University, Fayoum-Campus, Egypt in 2001, and he received the M.Sc. degree in 2004 from the Electronics and Communication Engineering Department, Cairo University, Egypt. He is currently a Teacher Assistant at the Electrical Engineering Department, Cairo University, Fayoum-Campus. His research interests include analog CMOS integrated circuit design and signal processing, and digitally programmable CMOS analog building blocks. Soliman A. Mahmoud was born in Cairo, Egypt, in 1971. He received the B.Sc. degree with honors, the M.Sc. degree and the Ph.D. degree from the Electronics and Communications Department, Cairo University—Egypt in 1994, 1996 and 1999 respectively. He is currently an Assistant Professor at the Electrical Engineering Department, Cairo University, Fayoum-Campus. He has published more than 50 papers. His research and teaching interests are in circuit theory, fully integrated analog filters, high frequency transconductance amplifiers, low voltage analog CMOS circuit design, current-mode analog signal processing and mixed analog/digital programmable analog blocks. Ahmed M. Soliman was born in Cairo Egypt, on November 22, 1943. He received the B.Sc. degree with honors from Cairo University, Cairo, Egypt, in 1964, the M.S. and Ph.D. degrees from the University of Pittsburgh, Pittsburgh, PA., U.S.A., in 1967 and 1970, respectively, all in Electrical Engineering. He is currently Professor Electronics and Communications Engineering Department, Cairo University, Egypt. From September 1997–September 2003, Dr Soliman served as Professor and Chairman Electronics and Communications Engineering Department, Cairo University, Egypt. From 1985–1987, Dr. Soliman served as Professor and Chairman of the Electrical Engineering Department, United Arab Emirates University, and from 1987–1991 he was the Associate Dean of Engineering at the same University. He has held visiting academic appointments at San Francisco State University, Florida Atlantic University and the American University in Cairo. He was a visiting scholar at Bochum University, Germany (Summer 1985) and with the Technical University of Wien, Austria (Summer 1987). In 1977, Dr. Soliman was decorated with the First Class Science Medal, from the President of Egypt, for his services to the field of Engineering and Engineering Education. Dr Soliman is a member of the Editorial Board of Analog Integrated Circuits and Signal Processing. Presently Dr. Soliman is Associate Editor of the IEEE Transactions on Circuits and Systems I (Analog Circuits and Filters).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号