首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   2篇
电工技术   4篇
化学工业   35篇
金属工艺   2篇
机械仪表   6篇
建筑科学   1篇
能源动力   13篇
轻工业   9篇
水利工程   1篇
无线电   17篇
一般工业技术   81篇
冶金工业   50篇
原子能技术   7篇
自动化技术   17篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   14篇
  2012年   7篇
  2011年   11篇
  2010年   6篇
  2009年   12篇
  2008年   9篇
  2007年   5篇
  2006年   2篇
  2005年   8篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  2001年   6篇
  2000年   10篇
  1999年   3篇
  1998年   21篇
  1997年   7篇
  1996年   10篇
  1995年   7篇
  1994年   8篇
  1993年   12篇
  1992年   7篇
  1991年   6篇
  1990年   2篇
  1989年   4篇
  1988年   9篇
  1987年   9篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1976年   4篇
排序方式: 共有243条查询结果,搜索用时 15 毫秒
1.
Metal injection moulding (MIM) is an established process for high volume production of complex shaped metallic parts using commercially available feedstocks. The characteristics of parts after moulding, debinding, and sintering cannot be simply predictable from raw materials because the properties get altered with the process parameters and the corresponding levels of porosity during processing steps. In this study, physical properties, microstructure, and mechanical properties of the MIM parts have been characterised to understand the evolution of strength during various steps in MIM processing. Feedstocks with different binder loading show a considerable difference in physical as well as mechanical characteristics. During sintering of parts which have solid loading of grinding sludge, simultaneous in situ reduction and densification takes place, whereas only densification occurs in carbonyl iron parts. It is, therefore, possible to make complex shaped parts of different levels of porosity from downgraded shop floor metallic waste.  相似文献   
2.
Reduction of residual stress in montmorillonite/epoxy compounds   总被引:2,自引:0,他引:2  
An epoxy resin was cured while in intimate contact with small amounts of epoxyphilic montmorillonites. It was determined that cured epoxy exists within the montmorillonite interlayer by the observation of very high interlayer spacings, even greater than 8 nm, Generally, epoxy compounds containing montmorillonites that had been swollen in the curing agent prior to curing exhibited larger interlayer spacings, especially among the non-dispersed montmorillonite layers. The maximum observed residual stress was reduced by greater than 50% in the epoxyphilic montmorillonite/epoxy compounds over that of the pure epoxy. The epoxyphilic montmorillonite/epoxy compounds generally exhibited higher values of glass transition temperature, flexural modulus, and ultimate flexural strength than the pure epoxy. The tyramine-montmorillonite compounds typically had the highest values overall.  相似文献   
3.
Kinetics parameters of craze evolution preceding fatigue crack initiation (FCI) in mediumdensity polyethylene (MDPE) pipe materials were determined and analysed within fracture mechanics theory. A single craze initially preceded the notch tip, a root craze, which subsequently became accompanied by a few side crazes. Crack initiation transpired after the craze-zone growth had reached its fully developed configuration. The length of the root craze of the fully developed zone was found to be equal to the length of the first discontinuous crack band on the fracture surface. The growth of the root-craze length and the crack-tip opening displacement (CTOD) followed a power law over the major portion (94%) of the FCI time. Measurable rupture of the craze material was only noted within the final portion of the FCI time and was associated with exponential increase of the CTOD. The Dugdale/Barenblatt model overestimated the craze length by 30% and underestimated the CTOD by 50% which was hypothesized to be due to multiple crazing at the notch tip.  相似文献   
4.
Fatigue crack propagation (FCP) experiments were conducted on beta Ti-15-3 alloy under various loading conditions to examine the constancy of the specific enthalpy for fracture, advanced by the Crack Layer (CL) theory as a material parameter characteristic of its intrinsic toughness. The energy release rate and the irreversible work were determined from load-displacement curves during crack propagation. Microscopic and diffraction analyses were conducted to identify the damage mechanisms ahead of the crack tip. A damage zone whose geometry exhibited plane strain character at the initial stage of crack propagation was observed optically. The damage zone transformed into plane stress configuration when the crack reached half its critical length. Damage mechanisms involved slip lines and microcracking which is believed to ensue from intense accumulation of slip processes. The magnitude of microcracking became more weighty as the crack moved deeper into plane stress dominance. The damage preceding crack advance was quantitatively assessed as the crack resistance moment which is the volume of transformed material per unit crack extension. Application of the CL theory to the data generated under a wide range of applied stress levels gave rise to a constant value of the specific enthalpy of fracture, 20 MJ/m3. This value is in close agreement with the specific energy of slip lines computed from microstructural considerations.  相似文献   
5.
Crack propagation behaviour in single edge notched specimens prepared from medium-density polyethylene (MDPE) pipe is examined under creep condition. The crack grown from an exterior notch (inbound) initiated faster than that grown from an interior notch (outbound). Subsequently, the outbound crack propagated monotonically to ultimate failure. The inbound crack showed anomalous behaviour involving two arrest stages prior to ultimate failure. The pipe is found to possess substantial residual stresses. The energy release rate for each case was calculated taking into account the respective residual stream distribution. The fact that the rates of crack propagation are not a unique function of the energy release rate indicates that the fracture is also influenced by morphological gradients imposed by processing conditions.  相似文献   
6.
7.
Grid computing offers the powerful alternative of sharing resources on a worldwide scale, across different institutions to run computationally intensive, scientific applications without the need for a centralized supercomputer. Much effort has been put into development of software that deploys legacy applications on a grid-based infrastructure and efficiently uses available resources. One field that can benefit greatly from the use of grid resources is that of drug discovery since molecular docking simulations are an integral part of the discovery process. In this paper, we present a scalable, reusable platform to choreograph large virtual screening experiments over a computational grid using the molecular docking simulation software DOCK. Software components are applied on multiple levels to create automated workflows consisting of input data delivery, job scheduling, status query, and collection of output to be displayed in a manageable fashion for further analysis. This was achieved using Opal OP to wrap the DOCK application as a grid service and PERL for data manipulation purposes, alleviating the requirement for extensive knowledge of grid infrastructure. With the platform in place, a screening of the ZINC 2,066,906 compound "drug-like" subset database against an enzyme's catalytic site was successfully performed using the MPI version of DOCK 5.4 on the PRAGMA grid testbed. The screening required 11.56 days laboratory time and utilized 200 processors over 7 clusters.  相似文献   
8.
In this paper, we present a methodology for automating the process planning and NC code generation for a widely encountered class of free-form features that can be machined on a 3-axis mill–turn center. The free-form feature family that is considered is that of extruded protrusions whose cross-section is a closed, periodic B-Spline curve. In this methodology, for machining a part with B-Spline protrusion located at the free end, the part is first rough turned to the maximum profile diameter of the B-Spline, followed by rough profile cutting and finish profiling with axially mounted end mill tools. The identification and sequencing of machining volumes is completely automated, as is the generation of actual NC code. The approach supports both convex and non-convex profiles. In the case of non-convex profiles, the process planning algorithm ensures that there is no gouging of the work piece by the tool. The algorithm also identifies when sections of the tool path lie outside the work piece and utilizes rapid traverses in these regions to reduce cutting time. This methodology presents an integrated turn–mill process planning where by making the process fully automated from design with no user intervention making the overall process planning efficient. The algorithm was tested on several examples and test parts using the unmodified NC code obtained from the implementation were run on a Moriseiki mill–turn center. The parts that were produced met the dimensional specifications of the desired part.  相似文献   
9.
Sound isolation has been achieved using a piezoelectric polymer film connected to a negative capacitance feedback circuit. A curved PVDF film was located in the middle of an acoustic tube and the transmission loss of sound through the film was determined in the audio frequency range. At any chosen frequency, the complete isolation of sound was achieved by adjusting the feedback, i.e. the complex capacitance of the circuit was matched precisely to that of the film.  相似文献   
10.
When tin oxide is doped with Sb2O3 and CoO, it shows highly nonlinear current (I)-voltage (V) characteristics. Addition of CoO leads to creation of oxygen vacancies and helps in sintering of SnO2. Antimony oxide acts as a donor and increases the conductivity. The results are nearly the same when antimony oxide is replaced by tantalum oxide. The observed nonlinear coefficient, α = 30 and the breakdown voltage is 120 V/mm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号