首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6118篇
  免费   385篇
  国内免费   12篇
电工技术   103篇
综合类   2篇
化学工业   1552篇
金属工艺   99篇
机械仪表   178篇
建筑科学   276篇
矿业工程   9篇
能源动力   247篇
轻工业   1062篇
水利工程   79篇
石油天然气   62篇
无线电   415篇
一般工业技术   903篇
冶金工业   433篇
原子能技术   42篇
自动化技术   1053篇
  2024年   13篇
  2023年   58篇
  2022年   72篇
  2021年   288篇
  2020年   183篇
  2019年   235篇
  2018年   241篇
  2017年   234篇
  2016年   281篇
  2015年   172篇
  2014年   283篇
  2013年   496篇
  2012年   410篇
  2011年   489篇
  2010年   365篇
  2009年   378篇
  2008年   332篇
  2007年   275篇
  2006年   202篇
  2005年   140篇
  2004年   157篇
  2003年   111篇
  2002年   125篇
  2001年   88篇
  2000年   69篇
  1999年   68篇
  1998年   148篇
  1997年   111篇
  1996年   66篇
  1995年   72篇
  1994年   49篇
  1993年   37篇
  1992年   36篇
  1991年   22篇
  1990年   26篇
  1989年   26篇
  1988年   26篇
  1987年   9篇
  1986年   11篇
  1985年   14篇
  1984年   16篇
  1983年   10篇
  1982年   6篇
  1981年   11篇
  1980年   9篇
  1979年   5篇
  1978年   5篇
  1977年   8篇
  1976年   14篇
  1966年   2篇
排序方式: 共有6515条查询结果,搜索用时 468 毫秒
1.

In this work we analysed the stepwise charging technique to find the limits from which it is beneficial in terms of load capacitance and charge–discharge frequency. We included in the analysis practical limitations such as the consumption of auxiliary logic needed to implement the technique and the minimum size of auxiliary switches imposed by the technology. We proposed an ultra-low-power logic block to push these limits and to obtain benefits from this technique in small capacitances. Finally, we proposed to use a stepwise driver in the driving of the gate capacitance of power switches in switched-capacitor (SC) DC–DC converters. We designed and manufactured, in a 130 nm process, a SC DC–DC converter and measured a 29% energy reduction in the gate-drive losses of the converter. This accounts for an improvement of 4% (from 69 to 73%) in the overall converter efficiency.

  相似文献   
2.
With liquefied natural gas becoming increasingly prevalent as a flexible source of energy, the design and optimization of industrial refrigeration cycles becomes even more important. In this article, we propose an integrated surrogate modeling and optimization framework to model and optimize the complex CryoMan Cascade refrigeration cycle. Dimensionality reduction techniques are used to reduce the large number of process decision variables which are subsequently supplied to an array of Gaussian processes, modeling both the process objective as well as feasibility constraints. Through iterative resampling of the rigorous model, this data-driven surrogate is continually refined and subsequently optimized. This approach was not only able to improve on the results of directly optimizing the process flow sheet but also located the set of optimal operating conditions in only 2 h as opposed to the original 3 weeks, facilitating its use in the operational optimization and enhanced process design of large-scale industrial chemical systems.  相似文献   
3.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
4.
The corrosion mechanisms of T24, T92, VM12, and AISI 304 steels are studied under the influence of NaCl–KCl, NaCl–Na2SO4, and KCl–K2SO4 salt mixtures in a dry air atmosphere at 650°C for 15 days. NaCl–KCl was the most aggressive deposit and AISI 304 stainless steel exhibited the highest corrosion resistance. There was no relation between the Cr content of the ferritic steels and their corrosion resistance in NaCl–KCl. In contrast, the resistance of high-Cr steels was better when exposed to NaCl–Na2SO4 and KCl–K2SO4. The high-Cr and the low-Cr steels were more susceptible to NaCl–Na2SO4 and to KCl–K2SO4, respectively.  相似文献   
5.
Debittered trub (brewing waste) is an important source of protein source (70.26%). Trub and whey protein were used for 5% protein enrichment of ice cream frozen by liquid nitrogen. Three formulations were elaborated: ice cream standard (ICS), ice cream with whey protein (ICW) and ice cream with trub (ICT). Chemical composition, rheological properties, texture, overrun, melting rate, scanning electron microscopy and a sensorial test were performed. Results showed that ICT presented a higher viscosity, obtained on the upward curve up to 6.76 Pa s−1, consistency index (22.96 (Pa s−1)n), hysteresis area (140.40 mPa s−1) and hardness (31113.33 g) but a lower melting rate (0.38 g min−1), overrun (13.92%) and sensorial acceptability than the other formulations. The addition of trub debittered for protein enrichment improved ice cream properties and demonstrated that it could be used as a food ingredient.  相似文献   
6.
Here we report some recent biophysical issues on the preparation of solute-filled lipid vesicles and their relevance to the construction of “synthetic cells.” First, we introduce the “semi-synthetic minimal cells” as the liposome-based cell-like systems, which contain a minimal number of biomolecules required to display simple and complex biological functions. Next, we focus on recent aspects related to the construction of synthetic cells. Emphasis is given to the interplay between the methods of synthetic cell preparation and the physics of solute encapsulation. We briefly introduce the notion of structural and compositional “diversity” in synthetic cell populations.  相似文献   
7.
8.
9.
The work reported involved the fabrication of an electrospun tubular conduit of a gelatin and polycaprolactone (PCL) blend as an adventitia‐equivalent construct. Gelatin was included as the matrix for increased biocompatibility with the addition of PCL for durability. This is contrary to most of the literature available for biomaterials based on blends of gelatin and PCL where PCL is the major matrix. The work includes the assiduous selection of key electrospinning parameters to obtain smooth bead‐free fibres with a narrow distribution of pore size and fibre diameter. Few reports elucidate the optimization of all electrospinning parameters to fabricate tubular conduits with a focus on obtaining homogeneous pores and fibres. This stepwise investigation would be unique for the fabrication of gelatin–PCL electrospun tubular constructs. The fabricated microfibrous gelatin–PCL constructs had pores of size ca 50–100 μm reportedly conducive for cell infiltration. The measured value of surface roughness of 57.99 ± 17.4 nm is reported to be favourable for protein adhesion and cell adhesion. The elastic modulus was observed to be similar to that of the tunica adventitia of the native artery. Preliminary in vitro and in vivo biocompatibility tests suggest safe applicability as a biomaterial. Minimal cytotoxicity was observed using MTT assay. Subcutaneous implantation of the scaffold demonstrated acute inflammation which decreased by day 15. The findings of this study could enable the fabrication of smooth bead‐free microfibrous gelatin–PCL tubular construct as viable biomaterial which can be included in a bilayer or a trilayer scaffold for vascular tissue engineering. © 2019 Society of Chemical Industry  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号