首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   0篇
化学工业   5篇
金属工艺   4篇
机械仪表   4篇
石油天然气   12篇
无线电   18篇
一般工业技术   17篇
冶金工业   17篇
原子能技术   16篇
自动化技术   2篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1969年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
1.
Bochkareva  N. I.  Ivanov  A. M.  Klochkov  A. V.  Kogotkov  V. S.  Rebane  Yu. T.  Virko  M. V.  Shreter  Y. G. 《Semiconductors》2015,49(6):827-835
Semiconductors - It is shown that the emission efficiency and the 1/f noise level in light-emitting diodes with InGaN/GaN quantum wells correlate with how the differential resistance of a diode...  相似文献   
2.
3.
4.
5.
In this paper the process of nonfunctionalized negatively charged orthovanadate nanoparticle accumulation and redistribution in cells dependent on their shape and size was investigated. Aqueous colloidal solutions of nReVO4:Eu3 + (Re = Gd, Y, La) luminescent nanocrystals of different sizes and shapes have been synthesized. The average sizes of spherical particles were 2, 20, and 300 nm, of spindle-like particles – 22 × 6.3 nm, and of rod-like particles – 57 × 4.4 nm. Luminescence of nReVO4:Eu3 + nanocrystals was effectively excited by UV and visible irradiation. By means of luminescence microscopy and luminescence microspectroscopy, it has been revealed that spherical nanocrystals with an average diameter of 2 nm tend to accumulate mainly in the rat hepatocyte nuclei in situ and also in the isolated nuclei of these cells. An additional experiment has shown that nanoparticles reveal tropism to nuclear structural components. The penetration into nuclei does not require any modifications of the surface of nanoparticle and is governed by the shape and size of nanoparticle and also is determined by the cellular type.  相似文献   
6.
7.
8.
Translated from Khimicheskoe i Neftyanoe Mashinostroenie, No. 11, pp. 1–3, November, 1989.  相似文献   
9.
Conclusions Titanium nickelide powder produced by the calcium hydride reduction method possesses a very extended transformation range. Hence the material must exhibit the combined properties of superelasticity and shape memory over a very wide temperature range.During powder compacting additional factors (geometrical and physical) come into play which alter the transformation temperature. The effect of these becomes stronger with increasing compacting pressure. These factors are the binding of structural elements at contacts between particles, which may be released by the restoring stress which increases with increasing temperature, and also the participation of the usual plastic flow mechanisms in the process of deformation of the material.Translated from Poroshkovaya Metallurgiya, No. 11 (347), pp. 40–46, November, 1991.  相似文献   
10.
This study is concerned with the photoluminescence spectra and electrical parameters of AlGaAs/InGaAs/GaAs pseudomorphic high-electron-mobility transistor (P-HEMT) structures with a quantum well grown at different depths L b with respect to the surface. The samples are produced so as to make the concentration of electrons in the quantum well unchanged, as the barrier layer thickness L b is reduced. It is established that the photoluminescence spectra of all of the samples exhibit peaks at the photon energies ħ ω = 1.28−1.30 and 1.35–1.38 eV. The ratio between the intensities of these peaks increases as L b is decreased. Calculations of the band structure show that variations in the spectra are due to the fact that the built-in electric field increases as the quantum well is set closer to the surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号