首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79928篇
  免费   7588篇
  国内免费   4144篇
电工技术   4744篇
技术理论   5篇
综合类   6201篇
化学工业   13131篇
金属工艺   4278篇
机械仪表   5187篇
建筑科学   6245篇
矿业工程   2501篇
能源动力   2508篇
轻工业   5195篇
水利工程   1495篇
石油天然气   4571篇
武器工业   632篇
无线电   9250篇
一般工业技术   9732篇
冶金工业   3633篇
原子能技术   1000篇
自动化技术   11352篇
  2024年   223篇
  2023年   1173篇
  2022年   1967篇
  2021年   2981篇
  2020年   2314篇
  2019年   2066篇
  2018年   2249篇
  2017年   2507篇
  2016年   2330篇
  2015年   3038篇
  2014年   3895篇
  2013年   4745篇
  2012年   4938篇
  2011年   5247篇
  2010年   4754篇
  2009年   4435篇
  2008年   4444篇
  2007年   4161篇
  2006年   4290篇
  2005年   3631篇
  2004年   2724篇
  2003年   3139篇
  2002年   3868篇
  2001年   3371篇
  2000年   2386篇
  1999年   2239篇
  1998年   1554篇
  1997年   1307篇
  1996年   1226篇
  1995年   1004篇
  1994年   845篇
  1993年   614篇
  1992年   462篇
  1991年   364篇
  1990年   262篇
  1989年   230篇
  1988年   212篇
  1987年   126篇
  1986年   80篇
  1985年   52篇
  1984年   32篇
  1983年   20篇
  1982年   37篇
  1981年   23篇
  1980年   32篇
  1979年   19篇
  1978年   5篇
  1977年   6篇
  1976年   5篇
  1959年   6篇
排序方式: 共有10000条查询结果,搜索用时 562 毫秒
1.
Polymer electrets have revealed great potential application in electromechanical devices because of the low weight, large quasi-piezoelectric sensitivity, and excellent flexibility. For an electret, a permanent and macroscopic electric field exists on the surface, principally led by a macroscopic electrostatic charge on the surface or a net orientation of polar groups inside the object. Here, progress in the development of polymer electrets is reviewed. After a brief retrospect of the research courses and those typical polymer electrets that are classified into fluorine polymer and nonfluorine polymer, we present a survey on the charging methods, including corona, soft X-ray, contact, thermal and monoenergetic particle beams. The latest representative applications (i.e., power harvesting, sensors, field effect transistors, and biomedicine) based on polymer electrets are also summarized. Finally, we complete this review with a discussion on perspectives and challenges in this field.  相似文献   
2.
International Journal of Speech Technology - With the development of multimedia technology and network technology applications, it is possible to implement online teaching systems in schools. This...  相似文献   
3.
A digital light processing (DLP) technology has been developed for 3D printing lead-free barium titanate (BTO) piezoelectric ceramics. By comparing the curing and rheological properties of slurries with different photosensitive monomer, a high refractive index monomer acryloyl morpholine (ACMO) was chosen, and a design and preparation method of BTO slurry with high solid content, low viscosity and high curing ability was proposed. By further selecting the printing parameters, the single-layer exposure time was reduced and the forming efficiency has been greatly improved. Sintered specimens were obtained after a nitrogen-air double-step debinding and furnace sintering process, and the BTO ceramics fabricated with 80 wt% slurry shows the highest relative density (95.32 %) and piezoelectric constant (168.1 pC/N). Furthermore, complex-structured BTO ceramics were prepared, impregnated by epoxy resin and finally assembly made into hydrophones, which has significance for the future design and manufacture of piezoelectric ceramic-based composites that used in functional devices.  相似文献   
4.
5.
Dielectric capacitors with decent energy storage and fast charge-discharge performances are essential in advanced pulsed power systems. In this study, novel ceramics (1-x)NaNbO3-xBi(Ni2/3Nb1/3)O3(xBNN, x = 0.05, 0.1, 0.15 and 0.20) with high energy storage capability, large power density and ultrafast discharge speed were designed and prepared. The impedance analysis proves that the introducing an appropriate amount of Bi(Ni0·5Nb0.5)O3 boosts the insulation ability, thus obtaining a high breakdown strength (Eb) of 440 kV/cm in xBNN ceramics. A high energy storage density (Wtotal) of 4.09 J/cm3, recoverable energy storage density (Wrec) of 3.31 J/cm3, and efficiency (η) of 80.9% were attained in the 0.15BNN ceramics. Furthermore, frequency and temperature stability (fluctuations of Wrec ≤ 0.4% over 5–100 Hz and Wrec ≤ 12.3% over 20–120 °C) were also observed. The 0.15BNN ceramics exhibited a large power density (19 MW/cm3) and ultrafast discharge time (~37 ns) over the range of ambient temperature to 120 °C. These enhanced performances may be attributed to the improved breakdown strength and relaxor behavior through the incorporation of BNN. In conclusion, these findings indicate that 0.15BNN ceramics may serve as promising materials for pulsed power systems.  相似文献   
6.
Composites based on hafnium carbide and reinforced with continuous naked carbon fiber with and without PyC interface were prepared at low temperature by precursor infiltration and pyrolysis and chemical vapor deposition method. The microstructure, mechanical property, cyclic ablation and fiber bundle push-in tests of the composites were investigated. The results show that after three times ablation cycles, the bending strength of samples without PyC interface decreased by 63.6 %; the bending strength of samples with PyC interface only decreased by 37.8 %. The force displacement curve of the samples with PyC interface presented a well pseudoplastic deformation state. The mechanical behavior difference of two kinds of composites was due to crucial function of PyC interface phase including protection of fiber and weakening of fiber/matrix interface.  相似文献   
7.
Given the continuing issues of environment and energy, methane dry reforming for syngas production have sparked interest among researchers, but struggled with the process immaturity owing to catalyst deactivation. This review summarizes the recent advances in the development of efficient and stable catalysts with strong resistance to coking and metal sintering, including the application of novel materials, the assessment of advanced characterizations and the compatibility to improved reaction system. One feasible option is the crystalline oxide catalysts (perovskite, pyrochlore, spinel and LDHs), which feature a fine metal dispersion and surface confinement effect via a metal exsolution strategy and exhibit superior reactivity and stability. Some new materials (h-BN, clays and MOFs) also extend the option because of their unique morphology and microstructure. It also is elaborated that progresses were achieved in advanced characterizations application, leading to success in the establishment of reaction mechanisms and attributions to the formed robust catalysts. In addition, the perspective described the upgrade of reaction system to a higher reaction efficiency and milder reaction conditions. The combination of efficient reaction systems and robust catalysts paves a way for a scaling-up application of the process.  相似文献   
8.
The purpose of the current work was to research the effect of alkali metal oxide on the structure, thermal properties, viscosity and chemical stability in the glass system (R2O–CaO–B2O3–SiO2) systematically. Because the glass would emulsify when Li2O was added to the glass batch, this article did not discuss Li2O. The results showed that when the amount of Na2O was less than 4 mol.%, there was a higher interconnectivity of borate and silicate sub-networks in glass, as more mixed Si–O–B bonds were present in glass. The glass samples exhibited excellent thermal properties and chemical stabilities. As the amount of Na2O exceeded 4 mol.%, the interconnectivity of borate and silicate sub-networks was weakened. The thermal properties and chemical stabilities of the glass samples were reduced. The connectivity of the silicate sub-network was weakened slightly as the Na/K ratio varied, and the coefficient of thermal expansion (CTE) of the glass samples gradually increased, and the resistance to thermal shock (RTS) value gradually decreased. Moreover, the viscosity of the glass samples decreased with the ratio of Na/Si and Na/K increased.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号