首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
化学工业   3篇
金属工艺   1篇
机械仪表   4篇
无线电   2篇
一般工业技术   8篇
原子能技术   1篇
  2020年   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   2篇
  2005年   3篇
排序方式: 共有19条查询结果,搜索用时 156 毫秒
1.
利用直流离子源产生氧离子束并在室温条件下与PET表面进行相互作用.通过X光电子能谱仪、接触角测试仪等表征技术,分析氧离子束工作压强对PET表面化学组分、化学键结构,以及对极性H2O分子液体的静态接触角等性能的影响.研究结果表明,当氧离子束与PET表面相互作用时,PET表面的C-O、C-H键首先被破坏,氧离子与C-垂悬键结合形成C-O或C=O极性键.随着氧离子束工作压强的增加,更多的氧离子与PET表面相互作用,导致处理后的PET表面含氧量增加,C=O/C-O比例增加,对极性H2O分子液体侵润性增强.当氧离子束工作压强增加至0.9Pa时,处理后的PET表面氧元素相对百分比含量由纯PET的28%增加至37%(原子比),C=O/C-O键比例由纯PET的1.13∶1增加至2.85:1,而极性H2O分子液体的静态接触角由纯PET的55.3°减低至7.0°,接近于完全润湿.上述结果表明,氧离子束是一种有效调节PET表面化学组分、化学键结构、及表面性质的简单而有效的方法.  相似文献   
2.
TiO2纳米粒子是一种N型半导体材料,因其具有高活性、稳定性、生物相容性而成为最受重视的一种光催化纳米材料,得到了广泛应用。但由于其存在禁带宽度较大,电子受激发跃迁时产生的电子和空穴十分容易复合等问题,影响光了催化效率,制约着其进一步发展。目前,如何提高TiO2纳米粒子的光催化效率成为材料研究中的热点,是研究的核心课题之一。本文介绍了TiO2纳米粒子的光催化原理,系统综述了TiO2纳米粒子的制备方法;同时总结了提高TiO2纳米粒子光催化效率的方法,并介绍其在生产生活中的应用。  相似文献   
3.
利用微波电子回旋共振(MW-ECR)等离子体增强非平衡磁控溅射法制备了碳氮化硅(SiCN)薄膜。研究结果表明,碳含量对薄膜化学结构、力学性能有很大影响。傅里叶变换红外光谱(FT-IR)和X射线光电子能谱(XPS)表征显示,随着碳靶溅射偏压由-450V提高到-650V,薄膜中碳含量由19.0%增加到27.1%,sp^3C-N键含量增多,薄膜生长速率由3.83nm/min提高到5.83nm/min,硬度在-600V时达到最大值25.36GPa。上述结果表明,提高碳靶溅射偏压,可以提高薄膜含碳量,得到性能较好的SiCN薄膜。  相似文献   
4.
目的定量分析阳离子掺杂ZnO材料中最优化阳离子掺杂量及电子载流子浓度。方法基于团簇加连接原子模型,解析并建立阳离子掺杂ZnO材料的团簇式结构,计算最优阳离子掺杂量条件下的电子载流子浓度。根据理论分析结果,设计Sn掺杂ZnO材料,并利用磁控溅射方法制备Sn掺杂ZnO薄膜。通过紫外可见分光光度计、霍尔效应测试仪等分别评价Sn掺杂ZnO薄膜的透光率和电子载流子浓度。结果以纤锌矿ZnO为研究体系,基于团簇加连接原子模型,建立纤锌矿ZnO的团簇式{[Zn-O4]Zn3}。在此基础上,建立纤锌矿ZnO超团簇结构:{中心团簇式}-{第一近邻团簇式}6-{连接团簇式}={[Zn-O4]Zn3}-{[Zn-O4]Zn3}6-{[Zn-O4]Zn3}=Zn32O32。基于纤锌矿ZnO超团簇结构,建立阳离子掺杂ZnO的超团簇结构{[M-O4]Zn3}-{{[M-O4]Zn3}{[Zn-O4]Zn3}5}-{[M-O4]Zn3}=M3Zn29O32,给出最优化元素配比AM︰AZn=10.34%。根据阳离子掺杂ZnO的超团簇结构M3Zn29O32,定量计算出Al3Zn29O32的最优化电子载流子浓度为3.935×10^21 cm^–3,并分析实际应用的AlZn31O32薄膜的电子载流子浓度仅为最优化理论值1/10的原因。最终,设计并制备SnZn31O32薄膜,其在可见光波段(450~800nm)的平均透光率为80.25%±1.74%,电子载流子浓度为(7.72±1.68)×10^20 cm^–3。结论团簇加连接原子模型能够定量解析阳离子掺杂ZnO材料体系中掺杂量与电子载流子浓度,可为设计高性能阳离子掺杂ZnO材料提供理论指导。基于团簇加连接原子模型设计的SnZn31O32薄膜,具备透明导电性质,通过进一步的研究,有望成为具有高电子载流子浓度的新型透明导电氧化物材料。  相似文献   
5.
针对正常工况下的内燃机活塞表面温度变化迅速的情况,研制了一种便于安装的薄膜热电偶测温螺钉传感器。采用直流脉冲磁控溅射的方法将Ni Cr/Ni Si热电偶薄膜直接溅射沉积在与内燃机活塞同种材料的测温螺钉的端部,热电偶薄膜和测温螺钉之间采用相同的磁控溅射方法制备Al2O3绝缘薄膜,采用自行研制的薄膜热电偶静、动态标定系统对所研制的测温螺钉进行标定,结果表明所研制的测温螺钉传感器在50~400℃范围内具有良好的线性和热稳定性,其塞贝克系数为41.9μV/K,最大线性误差不超过0.9%。热接点厚度仅为2μm,其响应时间为47.5μs。可以满足曲轴转速为1 800 r/min的内燃机活塞表面瞬态温度测试的需求,为内燃机结构的优化改进,新产品的开发提供了有力的保障,为新型传感器技术的进步做出了有益的尝试。  相似文献   
6.
制备绝缘性能良好的Al2O3薄膜是研制薄膜热电偶瞬态温度传感器的关键技术之一。针对直流脉冲磁控溅射制备的Al2O3绝缘薄膜总是存在针孔等缺陷,提出了利用直流脉冲磁控溅射加射频偏压技术成功制备了薄膜热电偶瞬态温度测试传感器的Al2O3绝缘薄膜。通过台阶仪、高阻计、扫描电子显微镜和划痕试验仪对Al2O3绝缘膜的成膜厚度、绝缘性、表面形貌及膜基结合力进行了观测,结果表明,制备的Al2O3绝缘膜厚度可达2.4μm;其绝缘性可达2.6×109Ω;薄膜表面光滑,成膜均匀;Al∶O原子比近似为2∶3;与金属基体的结合力可达12N。提供了一种制备高致密、高绝缘性能Al2O3薄膜的简单有效的方法,为制备瞬态温度传感器提供了技术保障。  相似文献   
7.
针对内燃机活塞表面温度变化迅速的特点,研制了一种瞬态温度传感器用于测量活塞表面温度。采用直流脉冲磁控溅射的方法将NiCr薄膜直接溅射沉积在高温烧结后嵌有NiCr、NiSi丝的陶瓷元件端面,NiCr薄膜外侧溅射Si3N4保护膜。传感器外壁选用带螺纹的304不锈钢作为铠装套筒。采用自行研制的薄膜热电偶静动态标定系统对所研制的瞬态温度传感器进行标定,结果表明:所研制的传感器在50~400℃范围内具有良好的线性和热稳定性,其塞贝克系数在39~41μV/K之间,非线性误差小于0.34%,重复性好;热接点薄膜厚度为355nm时,传感器的响应时间为41.7μs,且响应时间随着薄膜厚度的增大而增加;该瞬态温度传感器可以满足曲轴转速为1800r/min的内燃机活塞表面瞬态温度测试的需求。  相似文献   
8.
利用直流脉冲磁控溅射方法在不同O2/Ar比例条件下制备具有不同结构、性能的TiO2薄膜,利用台阶仪、X射线衍射仪及紫外-可见分光光度计等仪器,对薄膜的结构、透光性能、光催化性能等进行表征。研究结果表明:TiO2薄膜的结构、光催化性能等强烈依赖于沉积过程中的O2/Ar比例。在低O2/Ar比例条件下制备的TiO2薄膜,薄膜处于O控制生长阶段,相应薄膜处于高速生长状态,薄膜经退火处理后形成锐钛矿(101)相择优取向结构,同时薄膜对甲基橙溶液降解率较低。随着O2/Ar比例的增加,薄膜生长速率逐渐降低,薄膜逐渐呈现多相混合生长,经退火处理后薄膜呈现锐钛矿(101)相与(004)相的混合相结构,相应薄膜对甲基橙溶液降解率增加,在O2/Ar比为6/14时,其对甲基橙溶液降解率达到最大值,为86.45%。继续增加O2/Ar比例,在高O2/Ar比例条件下,薄膜沉积速率较低,沉积离子有充足的驰豫时间释放自身能量以寻找低能位置,因此在薄膜沉积过程中主要形成能量最低的锐钛矿(101)相结构,经退火处理后薄膜呈现锐钛矿(101)相择优取向结构,在O2/Ar比为20/0时,薄膜对甲基橙溶液降解率下降至52.15%。  相似文献   
9.
柔性有机电致发光器件衬底阻透性能的测试方法   总被引:1,自引:1,他引:0  
FOLED被认为是最具发展前景的下一代显示技术之一,但由于H2O、O2等有害气体的侵蚀,FOLED器件很难达到商用显示器件的最低使用寿命标准(1×104 h).虽然在柔性衬底上制备保护层是延长器件使用寿命的有效方法,但目前为止,还没有商用测试仪器可以评价保护层对H2O、O2等有害气体的阻隔性能.介绍了几种测试H2O、O2渗透率的方法,及它们在评价FOLED衬底保护层阻隔性能方面的应用.  相似文献   
10.
利用微波ECR等离子体增强非平衡磁控溅射法制备了硅碳氮(SiCN)薄膜,并利用X射线光电子能谱、扫描电镜、椭偏光谱仪等对薄膜成分、结构、性能等进行表征.结果表明薄膜中O杂质含量及其结合态对薄膜的化学结构和机械性能都产生了很大影响.Si靶溅射功率最低时(100W),薄膜中O杂质含量高达10.63%,以Si-O键结构为主,此时薄膜的疏松结构导致大气环境下O的化学吸附是O杂质的主要来源;在高Si靶溅射功率情况下(>250W),薄膜中O杂质含量低于4%,且以C-O键结构为主,薄膜致密,硬度最高达29.1GPa、折射率可达2.43.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号