首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11412篇
  免费   756篇
  国内免费   96篇
电工技术   259篇
综合类   95篇
化学工业   2177篇
金属工艺   339篇
机械仪表   543篇
建筑科学   312篇
矿业工程   34篇
能源动力   414篇
轻工业   914篇
水利工程   91篇
石油天然气   76篇
武器工业   23篇
无线电   2056篇
一般工业技术   2016篇
冶金工业   1044篇
原子能技术   109篇
自动化技术   1762篇
  2024年   16篇
  2023年   113篇
  2022年   113篇
  2021年   290篇
  2020年   235篇
  2019年   252篇
  2018年   271篇
  2017年   277篇
  2016年   357篇
  2015年   314篇
  2014年   495篇
  2013年   828篇
  2012年   676篇
  2011年   720篇
  2010年   534篇
  2009年   627篇
  2008年   543篇
  2007年   528篇
  2006年   492篇
  2005年   410篇
  2004年   359篇
  2003年   323篇
  2002年   344篇
  2001年   271篇
  2000年   246篇
  1999年   241篇
  1998年   488篇
  1997年   294篇
  1996年   230篇
  1995年   180篇
  1994年   157篇
  1993年   159篇
  1992年   85篇
  1991年   117篇
  1990年   85篇
  1989年   83篇
  1988年   64篇
  1987年   57篇
  1986年   51篇
  1985年   45篇
  1984年   36篇
  1983年   33篇
  1982年   24篇
  1981年   32篇
  1980年   20篇
  1979年   16篇
  1978年   22篇
  1977年   21篇
  1976年   32篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
3.
4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a major active metabolite of bisphenol A (BPA), is generated in the mammalian liver. Some studies have suggested that MBP exerts greater toxicity than BPA. However, the mechanism underlying MBP-induced pancreatic β-cell cytotoxicity remains largely unclear. This study demonstrated the cytotoxicity of MBP in pancreatic β-cells and elucidated the cellular mechanism involved in MBP-induced β-cell death. Our results showed that MBP exposure significantly reduced cell viability, caused insulin secretion dysfunction, and induced apoptotic events including increased caspase-3 activity and the expression of active forms of caspase-3/-7/-9 and PARP protein. In addition, MBP triggered endoplasmic reticulum (ER) stress, as indicated by the upregulation of GRP 78, CHOP, and cleaved caspase-12 proteins. Pretreatment with 4-phenylbutyric acid (4-PBA; a pharmacological inhibitor of ER stress) markedly reversed MBP-induced ER stress and apoptosis-related signals. Furthermore, exposure to MBP significantly induced the protein phosphorylation of JNK and AMP-activated protein kinase (AMPK)α. Pretreatment of β-cells with pharmacological inhibitors for JNK (SP600125) and AMPK (compound C), respectively, effectively abrogated the MBP-induced apoptosis-related signals. Both JNK and AMPK inhibitors also suppressed the MBP-induced activation of JNK and AMPKα and of each other. In conclusion, these findings suggest that MBP exposure exerts cytotoxicity on β-cells via the interdependent activation of JNK and AMPKα, which regulates the downstream apoptotic signaling pathway.  相似文献   
4.
A series of anionic conjugated polyelectrolytes (CPEs) is synthesized based on poly(fluorene-co-phenylene) by varying the side-chain ionic density from two to six per repeat units (MPS2-TMA, MPS4-TMA, and MPS6-TMA). The effect of MPS2, 4, 6-TMA as interlayers on top of a hole-extraction layer of poly(bis(4-phenyl)-2,4,6-trimethylphenylamine (PTAA) is investigated in inverted perovskite solar cells (PeSCs). Owing to the improved wettability of perovskites on hydrophobic PTAA with the CPEs, the PeSCs with CPE interlayers demonstrate a significantly enhanced device performance, with negligible device-to-device dependence relative to the reference PeSC without CPEs. By increasing the ionic density in the MPS-TMA interlayers, the wetting, interfacial defect passivation, and crystal growth of the perovskites are significantly improved without increasing the series resistance of the PeSCs. In particular, the open-circuit voltage increases from 1.06 V for the PeSC with MPS2-TMA to 1.11 V for the PeSC with MPS6-TMA. The trap densities of the PeSCs with MPS2,4,6-TMA are further analyzed using frequency-dependent capacitance measurements. Finally, a large-area (1 cm2) PeSC is successfully fabricated with MPS6-TMA, showing a power conversion efficiency of 18.38% with negligible hysteresis and a stable power output under light soaking for 60 s.  相似文献   
5.
6.
Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry.  相似文献   
7.
Unreliable mobility values, and particularly greatly overestimated values and severely distorted temperature dependences, have recently hampered the development of the organic transistor field. Given that organic field‐effect transistors (OFETs) have been routinely used to evaluate mobility, precise parameter extraction using the electrical properties of OFETs is thus of primary importance. This review examines the origins of the various mobilities that must be determined for OFET applications, the relevant extraction methods, and the data selection limitations, which help in avoiding conceptual errors during mobility extraction. For increased precision, the review also discusses device fabrication considerations, calibration of both the specific gate‐dielectric capacitance and the threshold voltage, the contact effects, and the bias and temperature dependences, which must actually be handled with great care but have mostly been overlooked to date. This review serves as a systematic overview of the OFET mobility extraction process to ensure high precision and will also aid in improving future research.  相似文献   
8.
为大幅提高产两性霉素B菌株的发酵产抗水平,对外源性短链脂肪酸类前体物质及其添加时机、添加量进行优化,得到了两性霉素B补料分批发酵工艺,即在产两性霉素B菌株发酵培养24~56 h左右,一次性补入2~4 g·L~(-1)(以发酵液总量计)的丙酸钠。该工艺解决了两性霉素B生物合成途径中内酯环形成的关键性因素,大幅提高了产两性霉素B菌株的发酵产抗水平。经15 t生产罐验证,最终实现了连续3批平均放罐效价达10 977μg·mL~(-1)的发酵产抗水平,与采用原发酵工艺的生产罐批相比,放罐效价提高了39.4%。  相似文献   
9.
Peer-to-Peer Networking and Applications - P2P-TV is a TV system that receives content through a peer-to-peer network. Content is stored in the distributed manner then to be serviced to users, and...  相似文献   
10.
Tricalcium silicate (C3S) and hydroxyapatite (HAp) composites were fabricated through the sol-gel process. The aim of this research is to improve the biocompatibility of C3S through HAp addition and study the potential of using this as coating materials. The composites (HAp/C3S) were characterised by Fourier transform infrared spectrometry, thermal gravity-differential thermal analysis and X-ray diffraction. The working and setting times of cement pastes were tested using Gillmore needle. Mechanical properties were examined by nanoindentation and material testing system. In vitro biocompatibility of the materials were studied by cell attachment and viability of L929 and MG-63 cells. HAp/C3S as a coating material on gelatin film were measured with the surface roughness and imaged by scanning electron microscope. With the addition of HAp, no undesirable free CaO was detected with the synthesis by the sol-gel preparation. The pH values of HAp added groups were between 7.54 and 8.76, which were much lower than pure C3S group (pH?=?11.75). For in vitro studies, the presence of HAp could effectively enhance the cell attachment and viability of both L929 and MG-63 cells grown in the extract or directly on the composites. However, the mechanical properties of the composites were impaired as compared to pure C3S. Lastly, HAp/C3S cement could be evenly coated on gelatin film. HAp is successfully demonstrated to improve C3S biocompatibility with this new composites HAp/C3S. C-75 (75% C3S and 25% HAp), in particular, has good biocompatibility, relatively high compressive strength and can be uniformly coated onto gelatin film. Thus, C-75 is a promising material for further investigation as a coating on other biopolymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号