首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37920篇
  免费   14799篇
电工技术   739篇
综合类   4篇
化学工业   17221篇
金属工艺   328篇
机械仪表   717篇
建筑科学   1706篇
矿业工程   3篇
能源动力   836篇
轻工业   7211篇
水利工程   282篇
石油天然气   50篇
无线电   6834篇
一般工业技术   11535篇
冶金工业   783篇
原子能技术   8篇
自动化技术   4462篇
  2023年   9篇
  2022年   16篇
  2021年   234篇
  2020年   1443篇
  2019年   3194篇
  2018年   3111篇
  2017年   3428篇
  2016年   3909篇
  2015年   3963篇
  2014年   3889篇
  2013年   4979篇
  2012年   2720篇
  2011年   2368篇
  2010年   2629篇
  2009年   2520篇
  2008年   2070篇
  2007年   1909篇
  2006年   1674篇
  2005年   1386篇
  2004年   1352篇
  2003年   1318篇
  2002年   1273篇
  2001年   1104篇
  2000年   1084篇
  1999年   475篇
  1998年   127篇
  1997年   79篇
  1996年   40篇
  1995年   28篇
  1994年   38篇
  1993年   45篇
  1992年   26篇
  1991年   27篇
  1990年   20篇
  1989年   13篇
  1988年   14篇
  1987年   21篇
  1986年   19篇
  1985年   16篇
  1984年   13篇
  1983年   10篇
  1982年   10篇
  1981年   11篇
  1980年   8篇
  1979年   9篇
  1978年   10篇
  1977年   10篇
  1976年   17篇
  1973年   6篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 287 毫秒
1.
2.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
3.
Marrone  Mauricio  Lemke  Sascha  Kolbe  Lutz M. 《Scientometrics》2022,127(7):3857-3878
Scientometrics - Computer-assisted methods and tools can help researchers automate the coding process of literature reviews and accelerate the literature review process. However, existing...  相似文献   
4.
Bioactive glasses and glass-ceramics (GCs) effectively regenerate bone tissue, however most GCs show improved mechanical properties. In this work, we developed and tested a rarely studied bioactive glass composition (24.4K2O-26.9CaO-46.1SiO2-2.6P2O5 mol%, identified as 45S5-K) with different particle sizes and heating rates to obtain a sintered GC that combines good fracture strength, low elastic modulus, and bioactivity. We analyzed the influence of the sintering processing conditions in the elastic modulus, Vickers microhardness, density, and crystal phase formation in the GC. The best GC shows improved properties compared with its parent glass. This glass achieves a good densification degree with a two-step viscous flow sintering approach and the resulting GC shows as high bioactivity as that of the standard 45S5 Bioglass®. Furthermore, the GC elastic modulus (56 GPa) is relatively low, minimizing stress shielding. Therefore, we unveiled the glass sintering behavior with concurrent crystallization of this complex bioactive glass composition and developed a potential GC for bone regeneration.  相似文献   
5.
The aim of this exploratory study has been to investigate the fire properties and environmental aspects of different upholstery material combinations, mainly for domestic applications. An analysis of the sustainability and circularity of selected textiles, along with lifecycle assessment, is used to qualitatively evaluate materials from an environmental perspective. The cone calorimeter was the primary tool used to screen 20 different material combinations from a fire performance perspective. It was found that textile covers of conventional fibres such as wool, cotton and polyester, can be improved by blending them with fire resistant speciality fibres. A new three‐dimensional web structure has been examined as an alternative padding material, showing preliminary promising fire properties with regard to ignition time, heat release rates and smoke production.  相似文献   
6.
7.
Polymer‐grafted inorganic particles (PGIPs) are attractive building blocks for numerous chemical and material applications. Surface‐initiated controlled radical polymerization (SI‐CRP) is the most feasible method to fabricate PGIPs. However, a conventional in‐batch reaction still suffers from several disadvantages, including time‐consuming purification processes, low grafting efficiency, and possible gelation problems. Herein, a facile method is demonstrated to synthesize block copolymer–grafted inorganic particles, that is, poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMEMA)‐b‐poly(N‐isopropylacrylamide) (PNIPAM)–grafted silica micro‐particles using continuous flow chemistry in an environmentally friendly aqueous media. Immobilizing the chain transfer agent and subsequent SI‐CRP can be accomplished sequentially in a continuous flow system, avoiding multi‐step purification processes in between. The chain length (MW) of the grafted polymers is tunable by adjusting the flow time or monomer concentration, and the narrower molar mass dispersity (Р< 1.4) of the grafted polymers reveals the uniform polymer chains on the particles. Moreover, compared with the in‐batch reaction at the same condition, the continuous system also suppresses possible gelation problems.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号