首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48417篇
  免费   2777篇
  国内免费   2047篇
电工技术   1946篇
技术理论   6篇
综合类   1772篇
化学工业   7010篇
金属工艺   3691篇
机械仪表   2530篇
建筑科学   2460篇
矿业工程   831篇
能源动力   1536篇
轻工业   2990篇
水利工程   603篇
石油天然气   1842篇
武器工业   160篇
无线电   5719篇
一般工业技术   9690篇
冶金工业   5105篇
原子能技术   584篇
自动化技术   4766篇
  2024年   87篇
  2023年   472篇
  2022年   766篇
  2021年   1185篇
  2020年   968篇
  2019年   937篇
  2018年   1168篇
  2017年   1247篇
  2016年   1217篇
  2015年   1401篇
  2014年   1886篇
  2013年   3077篇
  2012年   2703篇
  2011年   3363篇
  2010年   2545篇
  2009年   2685篇
  2008年   2727篇
  2007年   2711篇
  2006年   2500篇
  2005年   2163篇
  2004年   1614篇
  2003年   1489篇
  2002年   1505篇
  2001年   1326篇
  2000年   1269篇
  1999年   1346篇
  1998年   1965篇
  1997年   1439篇
  1996年   1290篇
  1995年   882篇
  1994年   759篇
  1993年   567篇
  1992年   388篇
  1991年   358篇
  1990年   243篇
  1989年   236篇
  1988年   166篇
  1987年   115篇
  1986年   83篇
  1985年   69篇
  1984年   54篇
  1983年   42篇
  1982年   43篇
  1981年   37篇
  1980年   25篇
  1978年   13篇
  1977年   11篇
  1976年   23篇
  1975年   13篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 968 毫秒
1.
2.
A digital light processing (DLP) technology has been developed for 3D printing lead-free barium titanate (BTO) piezoelectric ceramics. By comparing the curing and rheological properties of slurries with different photosensitive monomer, a high refractive index monomer acryloyl morpholine (ACMO) was chosen, and a design and preparation method of BTO slurry with high solid content, low viscosity and high curing ability was proposed. By further selecting the printing parameters, the single-layer exposure time was reduced and the forming efficiency has been greatly improved. Sintered specimens were obtained after a nitrogen-air double-step debinding and furnace sintering process, and the BTO ceramics fabricated with 80 wt% slurry shows the highest relative density (95.32 %) and piezoelectric constant (168.1 pC/N). Furthermore, complex-structured BTO ceramics were prepared, impregnated by epoxy resin and finally assembly made into hydrophones, which has significance for the future design and manufacture of piezoelectric ceramic-based composites that used in functional devices.  相似文献   
3.
With the continuous development of bionics, such as, geckos and virginia creeper with both superhydrophobic and super-adhesive, the surface wetting and super-adhesive properties of various porous materials have attracted extensive attention of the scientific and medical communities. Here, the honeycomb polyurethane (PU) porous films with strong adhesion were successfully prepared by microphase separation method and the effects of growth parameters on their microstructure and adhesive strength to ice were investigated. It was found that a high relative humidity (e.g., 100%) and a low solution concentration (e.g., 2%) facilitated the formation of ordered honeycomb PU porous films, and as-prepared PU pores with average pore diameter as small as 5 μm are better ordered and more uniform than these in related documents. Although the contact angle of water droplets on the surface of PU porous films increased from the premodification value of 85–130° to more than 160° after surface modification with polydopamine (PDA), the corresponding rolling angle remained approximately constant (180°), indicating that the surface of PU porous films has strong adhesion similar to geckos and virginia creeper. Furthermore, at lower temperature, the PU porous films exhibited the high adhesive strength of 142.13 kPa on ice, which was strongly dependent on the porous microstructures and surface compositions. The improved adhesive behavior to ice of honeycomb PU porous films modified with PDA provides new strategies for surface modification of materials and potential applications in medical domain.  相似文献   
4.
Optical imaging has played a pivotal role in deciphering in vivo bioinformatics but is limited by shallow penetration depth and poor imaging performance owing to interfering tissue autofluorescence induced by concurrent photoexcitation. The emergence of near-infrared (NIR) self-luminescence imaging independent of real-time irradiation has timely addressed these problems. There are two main kinds of self-luminescent agents, namely inorganic and organic luminophores. Inorganic luminophores usually suffer from long-term biotoxicity concerns resulting from potential heavy-metal ions leakage and nonbiodegradability, which hinders their further translational application. In contrast, organic luminophores, especially organic semiconducting luminophores (OSLs) with good biodegradable potential, tunable design, and outstanding optical properties, are preferred in biological applications. This review summarizes the recent progress of OSLs used in NIR afterglow, chemiluminescence, and bioluminescence imaging. Molecular manipulation and nanoengineering approaches of OSLs are discussed, with emphasis on strategies that can extend the emission wavelength from visible to NIR range and amplify luminescence signals. This review concludes with a discussion of current challenges and possible solutions of OSLs in the self-luminescence field.  相似文献   
5.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
6.
7.
Porous g-C3N4 nanosheets (PCN) were prepared by the nickel-assisted one-step thermal polymerization method.Hydrogen (H2) which was produced by the reaction between nickel (Ni) foam and ammonia (NH3) defined the structure and properties of PCN.During the formation of PCN,the participation of H2 not only enhanced the spacing between layers but also boosted the specific surface area that more active sites were exposed.Additionally,H2 promoted pores formation in the nanosheets,which was beneficial to the transfer of photons through lamellar structure and improved the absorption efficiency of visible light.Remarkably,the obtained PCN possessed better Cr(Ⅵ) photocatalytic reduction efficiency than pure g-C3N4.The reaction rate constant (k) of PCN (0.013 min-1) was approximately twice that of bare g-C3N4 (0.007 min-1).Furthermore,the effects of original pH and concentration of Cr(Ⅵ)-containing solution on removal efficiency of Cr(Ⅵ) were explored.A possible photocatalytic mechanism was proposed based on the experiments of radical scavengers and photoelectrochemical characterizations.  相似文献   
8.
9.
Yan  Jing  Zhu  Rongying  Wu  Fan  Zhao  Ziyin  Ye  Huan  Hou  Mengying  Liu  Yong  Yin  Lichen 《Nano Research》2020,13(10):2706-2715
Nano Research - Insufficient intratumoral penetration greatly hurdles the anticancer performance of nanomedicine. To realize highly efficient tumor penetration in a precisely and spatiotemporally...  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号