首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   3篇
  国内免费   1篇
电工技术   1篇
化学工业   5篇
机械仪表   2篇
建筑科学   6篇
轻工业   1篇
无线电   7篇
一般工业技术   1篇
冶金工业   1篇
自动化技术   3篇
  2023年   1篇
  2021年   6篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
Engineering with Computers - In this paper, a recently developed meta-heuristic algorithm, shuffled shepherd optimization algorithm (SSOA), is employed for optimal design of reinforced concrete...  相似文献   
2.
Biomaterials with dynamically tunable properties are critical for a range of applications in regenerative medicine and basic biology. In this work, we show the reversible control of gelatin methacrylate (GelMA) hydrogel stiffness through the use of DNA crosslinkers. We replaced some of the inter-GelMA crosslinks with double-stranded DNA, allowing for their removal through toehold-mediated strand displacement. The crosslinks could be restored by adding fresh dsDNA with complementary handles to those on the hydrogel. The elastic modulus (G’) of the hydrogels could be tuned between 500 and 1000 Pa, reversibly, over two cycles without degradation of performance. By functionalizing the gels with a second DNA strand, it was possible to control the crosslink density and a model ligand in an orthogonal fashion with two different displacement strands. Our results demonstrate the potential for DNA to reversibly control both stiffness and ligand presentation in a protein-based hydrogel, and will be useful for teasing apart the spatiotemporal behavior of encapsulated cells.  相似文献   
3.
Spatial division multiplexing (SDM) in MIMO technology significantly increases the spectral efficiency, and hence capacity, of a wireless communication system: it is a core component of the next generation wireless systems, e.g. WiMAX, 3GPP LTE and other OFDM-based communication schemes. Moreover, spatial division multiple access (SDMA) is one of the widely used techniques for sharing the wireless medium between different mobile devices. Sphere detection is a prominent method of simplifying the detection complexity in both SDM and SDMA systems while maintaining BER performance comparable with the optimum maximum-likelihood (ML) detection. On the other hand, with different standards supporting different system parameters, it is crucial for both base station and handset devices to be configurable and seamlessly switch between different modes without the need for separate dedicated hardware units. This challenge emphasizes the need for SDR designs that target the handset devices. In this paper, we propose the architecture and FPGA realization of a configurable sort-free sphere detector, Flex-Sphere, that supports 4, 16, 64-QAM modulations as well as a combination of 2, 3 and 4 antenna/user configuration for handsets. The detector provides a data rate of up to 857.1 Mbps that fits well within the requirements of any of the next generation wireless standards. The algorithmic optimizations employed to produce an FPGA friendly realization are discussed.  相似文献   
4.
Software‐defined networking (SDN) is a modern approach for current computer and data networks. The increase in the number of business websites has resulted in an exponential growth in web traffic. To cope with the increased demands, multiple web servers with a front‐end load balancer are widely used by organizations and businesses as a viable solution to improve the performance. In this paper, we propose a load‐balancing mechanism for SDN. Our approach allocates web requests to each server according to its response time and the traffic volume of the corresponding switch port. The centralized SDN controller periodically collects this information to maintain an up‐to‐date view of the load distribution among the servers, and incoming user requests are redirected to the most appropriate server. The simulation results confirm the superiority of our approach compared to several other techniques. Compared to LBBSRT, round robin, and random selection methods, our mechanism improves the average response time by 19.58%, 33.94%, and 57.41%, respectively. Furthermore, the average improvement of throughput in comparison with these algorithms is 16.52%, 29.72%, and 58.27%, respectively.  相似文献   
5.
Different concepts for modelling of soil-foundation in complete dynamic interaction analysis for a 110-m height 70-m span arched structure on 180 piles were investigated in this paper. The modelling approaches consisted of a sophisticated procedure to account for soil compliance and foundation flexibility by defining frequency-dependent springs and dashpots; namely, flexible-impedance base model. The results of this model were compared with those of the conventional modelling procedures; namely, fixed base model and flexible base model by defining frequency-independent springs. In the flexible-impedance base model, the substructure approach was employed through finite element modelling. To account for the kinematic interaction, the numerical model of the soil, foundation and piles were developed using a verified finite element model in ABAQUS. The free field time history and design spectrum were modified to obtain the foundation input motion. The impedance of pile groups with different length was obtained by the finite element model to assess the inertial interaction. The comparison of the results of the employed models showed that rocking and torsional responses were greatly affected by soil–structure interaction, indicating redistribution of seismic demands. It was also proven that the internal demands of the conventional model considering frequency-independent Winkler springs might be higher than those of the model including pile–soil–structure interaction effects.  相似文献   
6.
Slotted bolted connections (SBCs) have been developed and used as an axial friction damper in braced frames since 1980s. To employ the benefits of SBCs in moment resisting frames (MRFs), rotational slotted bolted connections have been developed more recently with limited application in members that flexural behavior is dominated to shear. In this paper, shear slotted bolted connection (SSBC) is introduced as a new type of friction dampers to employ the benefits of SBCs in lateral load resisting systems with predominant shear behavior members that dissipate energy by traditional yielding mechanisms. The SSBC is a modified bolted connection that dissipates energy through friction in which friction is activated by shear force. The applications of the proposed system as a shear link in link beams of eccentrically braced frames (EBFs), in the beams of MRFs, and coupling beams of coupled concrete shear walls are introduced. To show the efficiency of SSBC, an existing EBF with tubular link beam is equipped with SSBC, and its behavior is studied via models created in general purpose finite element program ABAQUS (SIMULIA, The Dassault Systèmes, Realistic Simulation, RI, USA) verified thoroughly against relevant test results. Also, three MRFs with different beam lengths are modified using SSBC, and their monotonic and cyclic behavior are investigated using validated finite element models. The results show that, as expected, SSBC is capable of working as a mechanical shear fuse dissipating energy effectively in both MRFs and EBFs without any material yielding.  相似文献   
7.
Programs express domain-level concepts in their source code. It might be expected that such concepts would have a degree of semantic cohesion. This cohesion ought to manifest itself in the dependence between statements all of which contribute to the computation of the same concept. This paper addresses a set of research questions that capture this informal observation. It presents the results of experiments on 10 programs that explore the relationship between domain-level concepts and dependence in source code. The results show that code associated with concepts has a greater degree of coherence, with tighter dependence. This finding has positive implications for the analysis of concepts as it provides an approach to decompose a program into smaller executable units, each of which captures the behaviour of the program with respect to a domain-level concept.  相似文献   
8.
The COVID-19 pandemic is caused by the 2019–nCoV/SARS-CoV-2 virus. This severe acute respiratory syndrome is currently a global health emergency and needs much effort to generate an urgent practical treatment to reduce COVID-19 complications and mortality in humans. Viral infection activates various cellular responses in infected cells, including cellular stress responses such as unfolded protein response (UPR) and autophagy, following the inhibition of mTOR. Both UPR and autophagy mechanisms are involved in cellular and tissue homeostasis, apoptosis, innate immunity modulation, and clearance of pathogens such as viral particles. However, during an evolutionary arms race, viruses gain the ability to subvert autophagy and UPR for their benefit. SARS-CoV-2 can enter host cells through binding to cell surface receptors, including angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1). ACE2 blockage increases autophagy through mTOR inhibition, leading to gastrointestinal complications during SARS-CoV-2 virus infection. NRP1 is also regulated by the mTOR pathway. An increased NRP1 can enhance the susceptibility of immune system dendritic cells (DCs) to SARS-CoV-2 and induce cytokine storm, which is related to high COVID-19 mortality. Therefore, signaling pathways such as mTOR, UPR, and autophagy may be potential therapeutic targets for COVID-19. Hence, extensive investigations are required to confirm these potentials. Since there is currently no specific treatment for COVID-19 infection, we sought to review and discuss the important roles of autophagy, UPR, and mTOR mechanisms in the regulation of cellular responses to coronavirus infection to help identify new antiviral modalities against SARS-CoV-2 virus.  相似文献   
9.
The photodegradation of copolyesters based on 1,4-cyclohexanedimethanol (CHDM), tetramethyl-1,3-cyclobutanediol, and terephthalic acid units was investigated using various analytical methods. Photodegradation products were characterized using Fourier transform infrared (FTIR), liquid chromatography–mass spectrometry (LC–MS), and X-ray Photoelectron spectroscopy (XPS) analysis. The homolytic scission of C-O bonds of ester groups through a Norrish Type I reaction was supported by time of flight secondary ion mass spectrometry and LC–MS results, while nuclear magnetic resonance analysis confirmed hydrogen abstraction from the tertiary carbon of CHDM units in the trans (equatorial-equatorial) conformation. Chain scission through Norrish Type II reaction is also responsible for the formation of carboxylic acid end group. Fluorescence emission from irradiated glycol modified poly(ethylene terephthalate) films demonstrated the formation of mono- and dihydroxyterephthalate species. Furthermore, FTIR and XPS valence band analysis confirmed configurational changes, in the polymer chain due to photodegradation. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47148.  相似文献   
10.
Coupling beams have had a widespread application as performance enhancing devices within concrete structures and more recently also in steel structures. However, the conventional coupling beams are not so efficient in coupling distant walls. In this paper, a novel form of coupling members, namely, coupling panels is proposed and, then, the application for a nine‐story building is investigated. Coupling panels are steel plates which are exerted in the intermediate spans between adjacent shear walls and act as a mega‐coupling beam. First, a verified finite element model is constructed to demonstrate coupling panel behavior along with its global structural mechanism. Subsequently, a nine story building is designed and retrofitted as a new and existing building, using coupling panels. Moreover, an innovative optimization algorithm is proposed in order to achieve the best plate configuration to improve the structural performance using Nonlinear Static Analysis, Modal Pushover Analysis and Time History Analysis and the corresponding results are compared. In summary, it is shown that coupling panels can considerably control structural deformation demands toward a uniform pattern and reduce demands of main shear walls. The optimized design method also leads to a more economical design in comparison with force‐based design approaches. In addition, the proposed coupling panels are shown to be significantly effective, regarding to energy dissipation during earthquakes, and can enhance the structural resiliency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号