首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学工业   5篇
机械仪表   1篇
轻工业   3篇
一般工业技术   2篇
自动化技术   3篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
  1999年   1篇
  1994年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
In order to compare the various precursors of silica aerogels, three different precursors namely TMOS, TEOS and Na2SiO3 were studied in this paper. The property differences of the aerogels caused by the three precursors were discussed in terms of reaction process, gelation time, pore size distributions, thermal conductivity, SEM, hydrophobicity and thermal stability. It has been found that the gelation time of the silica gel is strongly dependent on the type of precursor used. During the surface modification process, organic groups were attached to the wet gel skeletons transforming the hydrophilic to the hydrophobic which were characterized by Fourier Transform Infrared spectroscopy (FTIR). It has been found that the contact angle of the Na2SiO3 and TMOS precursor based aerogels with water have the higher contact angle of 149° and whereas Na2SiO3 precursor based aerogel has the lower contact angle of 130°. The thermal conductivities of the Na2SiO3 and TMOS based aerogels have been found to be lower (0.025 and 0.030 W m?1 K?1, respectively) compared to the TEOS based (0.050 W m?1 K?1) aerogels. The pore sizes obtained from the N2 adsorption measurements varied from 40 to 180, 70 to 190, and 90 to 200 nm for the TEOS, TMOS and Na2SiO3 precursor based aerogels, respectively. The scanning electron microscopy studies of the aerogels indicated that the Na2SiO3 and TMOS based aerogels show narrow and uniform pores while the particles of SiO2 network are very small. On the other hand, TEOS aerogel show non-uniform pores such that the numbers of smaller size pores are less compared to the pores of larger size while the SiO2 particles of the network are larger as compared to both Na2SiO3 and TMOS aerogels. Hence, the surface are of the aerogels prepared using TEOS precursor has been found to be the lowest (~620 m2 g?1) compared to the Na2SiO3 (~868 m2 g?1) and TMOS (~764 m2 g?1) aerogels.  相似文献   
2.
An analytical method for predicting the optimum number, location, and signal sound level of auditory warning devices is proposed. Factors which influence the perception of alarm signals, namely, ambient sound level, machining workstations (locations and their generated sound levels), workers' locations, and recommended signal sound level reaching workers are considered in the development of the objective function and constraints. Solving the multiple alarm location problem with a nonlinear programming technique yields the minimum number of auditory warning devices, their locations, and the minimum required sound level of warning signals. Two examples are given to demonstrate the applications of the predictive model.

Relevance to industry

The method presented in this paper enables engineers to determine the optimum number and location of auditory warning devices for manufacturing facilities to ensure adequate perception of warning signals. Since the proposed method is analytical in nature, it helps reduce trial-and-error effort normally spent in locating the alarm devices, thus saving both time and money.  相似文献   

3.
In this research work we focus on engineering the silica aerogel/polyethylene terephthalate (PET) fibre nonwoven fabric composites with various silica content during in-situ synthesis of silica aerogels in the nonwovens and their composite properties on sound absorption. The silica content was varied by varying the molar ratio of methanol (MeOH)/tetraethyl orthosilicate (TEOS) from 110 to 28. The gelation of silica alcogel took place inside the fabric followed by silylation and atmospheric pressure drying. The aerogel/PET nonwoven composites were characterized by FTIR, TGA and contact angle to explain the aerogel content and its behavior. Moreover, the physical properties such as thickness, bulk density, specific airflow resistance, and mean flow pore size have been investigated. The two microphone transfer function method was used to test the sound absorption coefficient (SAC) of aerogel composites at 1/3rd octave frequencies of 50–6300 Hz. The aerogel/PET nonwoven composites have exhibited higher SAC than the untreated or control PET nonwoven for the entire frequency range. The suitable solvent molar ratio of 55 has been recommended for synthesis of silica aerogels by considering not only the silica content to have high sound absorption but also based on hydrophobic characteristics of aerogel/PET nonwoven composites.  相似文献   
4.
CNC end milling is a widely used cutting operation to produce surfaces with various profiles. The manufactured parts’ quality not only depends on their geometries but also on their surface texture, such as roughness. To meet the roughness specification, the selection of values for cutting conditions, such as feed rate, spindle speed, and depth of cut, is traditionally conducted by trial and error, experience, and machining handbooks. Such empirical processing is time consuming and laborious. Therefore, a combined approach for determining optimal cutting conditions for the desired surface roughness in end milling is clearly needed. The proposed methodology consists of two parts: roughness modeling and optimal cutting parameters selection. First, a machine learning technique called support vector machines (SVMs) is proposed for the first time to capture characteristics of roughness and its factors. This is possible due to the superior properties of well generalization and global optimum of SVMs. Next, they are incorporated in an optimization problem so that a relatively new, effective, and efficient optimization algorithm, particle swarm optimization (PSO), can be applied to find optimum process parameters. The cooperation between both techniques can achieve the desired surface roughness and also maximize productivity simultaneously.  相似文献   
5.
Signaling Involved in Hair Follicle Morphogenesis and Development   总被引:2,自引:0,他引:2  
Hair follicle morphogenesis depends on Wnt, Shh, Notch, BMP and other signaling pathways interplay between epithelial and mesenchymal cells. The Wnt pathway plays an essential role during hair follicle induction, Shh is involved in morphogenesis and late stage differentiation, Notch signaling determines stem cell fate while BMP is involved in cellular differentiation. The Wnt pathway is considered to be the master regulator during hair follicle morphogenesis. Wnt signaling proceeds through EDA/EDAR/NF-κB signaling. NF-κB regulates the Wnt pathway and acts as a signal mediator by upregulating the expression of Shh ligand. Signal crosstalk between epithelial and mesenchymal cells takes place mainly through primary cilia. Primary cilia formation is initiated with epithelial laminin-511 interaction with dermal β-1 integrin, which also upregulates expression of downstream effectors of Shh pathway in dermal lineage. PDGF signal transduction essential for crosstalk is mediated through epithelial PDGF-A and PDGFRα expressed on the primary cilia. Dermal Shh and PDGF signaling up-regulates dermal noggin expression; noggin is a potent inhibitor of BMP signaling which helps in counteracting BMP mediated β-catenin inhibition. This interplay of signaling between the epithelial and dermal lineage helps in epithelial Shh signal amplification. The dermal Wnt pathway helps in upregulation of epithelial Notch expression. Dysregulation of these pathways leads to certain abnormalities and in some cases even tumor outgrowth.  相似文献   
6.
7.
This paper discusses a methodology to determine an appropriate sequence for implementing engineering and management (E&M) techniques for enhancing the effectiveness of the production and inventory control (P&IC) system. Firstly, direct relationships among E&M techniques are analysed using the fuzzy interpretive structural modelling (FISM) approach. A procedure based on a max-min fuzzy composition of the direct relationships is also applied to determine indirect relationships among E&M techniques. Then, an appropriate implementation sequence of these E&M techniques is determined based on the driver power and dependence scores that are derived from the overall direct and indirect relationships among these techniques.  相似文献   
8.
Chemical composition and thermal properties of meat from two species of shrimps, black tiger shrimp (Penaeus monodon) and white shrimp (Penaeus vannamei), were comparatively studied. White shrimp meat had higher protein and ash contents than had black tiger shrimp meat (p < 0.05). Fractionation of nitrogenous constituents revealed that myofibrillar protein was the major component in the muscles; myosin heavy chain (MHC) and actin were the predominant proteins. White shrimp meat comprised higher stromal protein with greater pepsin-soluble collagen and insoluble collagen contents than did black tiger shrimp meat. Muscle proteins from black tiger shrimp, especially MHC, had higher thermal stability than those from white shrimp as indicated by the higher transition temperature (Tmax) as well as the lower inactivation rate constant (KD). Phospholipid was the predominant lipid (72–74%) in both shrimps, followed by triglyceride. Polyunsaturated fatty acids were found as the major fatty acids with the range of 42.2–44.4%. DHA (22:6)/EPA (20:5) ratio in black tiger shrimp (2.15) was higher than that in white shrimp (1.05). Mg was the dominant mineral in both shrimps. Ca and Fe were also found at high concentrations. Arginine was the most abundant amino acid, while leucine, isoleucine and proline were predominant in both shrimps. Glutamic acid and glycine contents were greater in black tiger shrimp meat; however, white shrimp meat had higher hydroxyproline content. Different compositions might govern the different characteristics as well as thermal properties of both species.  相似文献   
9.
The effects of different freeze–thaw cycles (0, 1, 3 and 5) on the physicochemical properties and microstructures of black tiger shrimp (Penaeus monodon) and white shrimp (Penaeus vannamei) muscle were investigated. White shrimp had greater exudate loss and higher α-glucosidase (AG), as well as β-N-acetyl-glucosaminidase (NAG) activities, than did black tiger shrimp, especially when the number of freeze–thaw cycles increased (P < 0.05). The decreases in Ca2+-ATPase activity, sulfhydryl group content and protein solubility with concomitant increases in disulfide bond formation and surface hydrophobicity were more pronounced in white shrimp muscle, than in black tiger shrimp muscle, particularly after five cycles of freeze–thawing (P < 0.05). The shear force of both shrimps was decreased after five freeze–thaw cycles (P < 0.05). The microstructure study revealed that the muscle fibers were less attached, with the loss of Z-disks, after subjection to five freeze–thaw cycles. Therefore, the freeze–thawing process caused denaturation of proteins, cell disruption, as well as structural damage of muscle in both shrimps. White shrimp generally underwent physicochemical changes induced by the freeze–thawing process to a greater extent than did black tiger shrimp.  相似文献   
10.
Eugenol is the principle chemical constituent of clove oil and has been used to cure dental problems for ages. Eugenol is an integral part of the dentist's kit due to its analgesic, local anesthetic, anti-;inflammatory, and antibacterial effects. It is used in the form of a paste or mixture as dental cement, filler, and restorative material. This study reports the development and evaluation of controlled-release mucoadhesive tablets for gingival application, containing eugenol, which are prepared by taking carbopol 934 P and Hydroxypropyl methylcellulose (HPMC) K4M in the ratio of 1:2, 1:1, and 2:1. Incorporation of eugenol (10 mg) in a mucoadhesive formulation provides controlled release for a period of 8 hours, which is advantageous over conventional use. In vitro mucoadhesion measured as detachment force in grams and the formulations show good correlation in vivo. The release study indicates that increase in carbopol increases the release rate of eugenol from the formulation whereas HPMC retards it. Increased in vitro bioadhesion is related to HPMC content of the formulation. The release kinetics of eugenol in vitro correlates with the in vivo results. This indicates the increased potential of eugenol as antibacterial, local analgesic, and anaesthetic treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号