首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   431篇
  免费   21篇
  国内免费   2篇
电工技术   9篇
化学工业   70篇
金属工艺   6篇
机械仪表   10篇
建筑科学   13篇
矿业工程   1篇
能源动力   13篇
轻工业   32篇
水利工程   6篇
无线电   57篇
一般工业技术   105篇
冶金工业   44篇
原子能技术   4篇
自动化技术   84篇
  2023年   7篇
  2022年   21篇
  2021年   17篇
  2020年   24篇
  2019年   25篇
  2018年   26篇
  2017年   29篇
  2016年   14篇
  2015年   9篇
  2014年   27篇
  2013年   35篇
  2012年   24篇
  2011年   26篇
  2010年   17篇
  2009年   9篇
  2008年   10篇
  2007年   12篇
  2006年   16篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   7篇
  1999年   6篇
  1998年   15篇
  1997年   6篇
  1996年   6篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1984年   3篇
  1983年   2篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1976年   2篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
排序方式: 共有454条查询结果,搜索用时 28 毫秒
1.
2.
Pattern Analysis and Applications - Particle filter is used extensively for estimation of target nonlinear and non-Gaussian state. However, its performance suffers due to its inherent problem of...  相似文献   
3.
Two-dimensional transistors are promising candidates for the next generation of nanoscale devices. Like the other alternatives, they also encounter problems such as instability under standard condition (STP), low channel mobility, small band gaps, and difficulty to integrate metal contacts. The latter poses a great challenge since metal/semiconductor interface significantly affects the transistor‘s performance. Some of these obstacles can be solved by using two-dimensional transition metal di-chalcogenides (TMDC) materials. In this study, we performed charge transport calculation based on density functional theory (DFT) followed by wave dynamics to evaluate the performance of six two-dimensional TMDC metal/semiconductor/metal systems. Each semiconductor monolayer was laterally connected, at both ends to metal contacts consisting of VS2 or FeS2 monolayers. We found that charge transport was more efficient in systems containing a CrS2 semiconductor monolayer compared to systems with MoS2 or WS2 as the semiconductor monolayer. The electronic characterization of the monolayer TMDC materials by DFT estimates well the trend in charge transport efficiency calculated using wave packet dynamics.  相似文献   
4.
5.
International Journal of Mechanics and Materials in Design - Present research is concerned with the study of two-dimensional disturbances in a non-homogeneous, isotropic, thermoelastic medium with...  相似文献   
6.
This paper presents a technique termed ‘pushdown analysis’ that can be used to investigate the robustness of building systems by computing residual capacity and establishing collapse modes of a damaged structure. The proposed method is inspired by the pushover method commonly used in earthquake engineering. Three variants of the technique, termed uniform pushdown, bay pushdown and incremental dynamic pushdown, are suggested and exercised using nonlinear analysis on 10-story steel moment frames designed for moderate and high levels of seismic risk. Simulation results show that the frame designed for high seismic risk is more robust than the corresponding one designed for moderate seismic risk. The improved performance is attributed to the influence of seismic detailing, specifically, the presence of reduced beam sections and stronger columns. It is shown that the dynamic impact factors associated with column removal are significantly lower than the commonly used value of 2.0 and are in line with lower values in the guidelines recently proposed by the US Department of Defense. The study suggests that seismic ‘fuses’ can play a role in the design for robustness and a discussion of the implications of this observation is provided.  相似文献   
7.
The objective of the present work is to get insights into the mechanistic origin of the reinforcement effects of nanoclay on a segmented polybutadiene polyurethane-urea system. To this end, a convergent analysis of the hard domain morphology and conformational state of soft segment in the nanocomposites was carried out by using a combination of complementary characterization techniques, namely, Fourier transform infrared spectroscopy, small angle neutron scattering, transmission electron microscopy, modulated differential scanning calorimetry and dynamic mechanical analysis. Analysis of small angle neutron scattering data by a combination of Percus–Yevick hard sphere and Zernike-Ornstein model coupled with direct visualization of the dispersed hard domain morphology from transmission electron microscopy provided insight on clay induced changes in the hard domain morphology. A monotonic decrease in the domain size as well as the average interdomain distance was observed with increasing nanoclay content in the polymer matrix. Analysis of the carbonyl stretching region from FTIR showed increased degree of hydrogen bonding for the urethane carbonyl groups of the nanocomposites compared to the neat matrix. A combination of calorimetric and dynamic mechanical analysis revealed the existence of a constrained amorphous region; quantified to be 16% at the highest clay content experimented. The manifestation of these morphological and conformational changes on the nano-, micro- and macro scale reinforcements in the nanocomposites was investigated by mechanical properties at these length scales using nanoindentation, DMA and tensile testing, respectively.  相似文献   
8.
Aloe vera (AV) is one of the medicinal herbs with a well-established spectrum of wound healing, antimicrobial and anti-inflammatory property. AV-mediated therapeutics present significant tissue regenerative activity by modulating the inflammatory and proliferative phases of wound healing. The purpose of the present work was to combine the biological properties of AV and the advantages of electrospun meshes to prepare a potent transdermal biomaterial. The polycaprolactone (PCL) containing 5 and 10 wt % of lyophilized powder of AV was studied for electrospinning into nanoscale fiber mats and compared with PCL/Collagen blend for dermal substitutes. SEM revealed the average diameters of PCL, PCL-AV 5 %, PCL-AV 10 % and PCL/Collagen nanofiber scaffolds in the range of 519 ± 28, 264 ± 46, 215 ± 63 and 249 ± 52 nm, respectively. PCL-AV 10 % nanofiber scaffolds showed finer fiber morphology with improved hydrophilic properties and higher tensile strength of 6.28 MPa with a Young’s modulus of 16.11 MPa desirable for skin tissue engineering. The nanofibers were then used to investigate differences in biological responses in terms of proliferation and cell morphology of mice dermal fibroblasts. It was found that PCL-AV 10 % nanofibrous matrix favored cell proliferation compared to other scaffolds which almost increased linearly by (p ≤ 0.01) 17.79 % and (p ≤ 0.01) 21.28 % compared to PCL on sixth and ninth day. CMFDA dye expression, secretion of collagen and F-actin expression were significantly increased in PCL-AV 10 % scaffolds compared to other nanofibrous scaffolds. The obtained results proved that the PCL-AV 10 % nanofibrous scaffold is a potential biomaterial for skin tissue regeneration.  相似文献   
9.
Fast detection of H2 gas at room temperature has constantly remained a challenge. The metal-oxide based gas sensors have shown excellent sensing properties for gases like H2, NO, CO and NH3. In the present work, the H2 gas sensing characteristics of multiwalled carbon nanotubes based hybrid sensor (F-MWCNTs/TiO2/Pt) has been reported. The fabricated sensor shows 3.9% sensitivity for low concentration i.e. 0.05% of H2 with good repeatability and stability at room temperature. The sensing response of F-MWCNTs/TiO2/Pt is interrelated to change in their resistance on the introduction of H2 gas and this phenomenon is required for deep understanding the effect of H2 adsorption on their electronic conduction. The improvement in sensitivity of F-MWCNTs/TiO2/Pt as compared to MWCNTs/TiO2 towards H2 is because of the catalytic role of dispersed Pt nanoparticles deposited by sputtering.  相似文献   
10.
Curing of adhesive bondlines is a critical and time-consuming operation in wind turbine blade manufacturing. Significant variation in adhesive thickness can lead to important differences in thermal histories trough the adhesive bonds due to the exothermic nature of the cure process. Reducing bondline cure cycle time and avoiding adhesive overheating are two competing factors in the design of cure temperature cycles. Predictive models on the impact of adhesive thickness variability in bondline cure temperature cycle is currently limited. Adhesive curing and temperature evolution can be simulated by finite element (FE) models coupling the heat transfer problem with the cure kinetics of the adhesive. The cure kinetics of the adhesive system was characterized by isothermal differential scanning calorimetry experiments and implemented in the FE software Abaqus/CAE by user subroutines. Predictions from the FE model were validated experimentally against temperature readings from the curing of 10, 20, and 30 mm thick adhesive bondlines. To highlight the role that predictive models potentially have in the optimization of bondline cure cycles a 2D cross section model representing the trailing edge of a wind turbine blade was used as case study. It was demonstrated that computational models enable customizing cure profiles for nonuniform adhesive thicknesses, ensuring fully cured bondlines with acceptable mechanical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号