首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
无线电   11篇
自动化技术   22篇
  2016年   1篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  1999年   3篇
  1998年   1篇
  1996年   2篇
排序方式: 共有33条查询结果,搜索用时 46 毫秒
1.
Ultra wideband (UWB) systems are considered as the key wireless infrastructure platforms for efficient short-range communications. In particular, the UWB based mobile computing systems are envisioned to be attractive solutions to various ad hoc networking applications. However, due to UWB’s unique physical characteristics, the traditional resource management schemes for ad hoc networks cannot be applied to UWB based systems directly. In this paper, we consider the bandwidth scheduling problem in a UWB based hierarchical wireless ad hoc network, which is typically used in an enterprise-scale mobile computing environment. Based on the mathematical analysis and the computer simulations, it is demonstrated that our proposed scheduling scheme exhibits close-to-optimal performance governed by the proportional fairness (PF) constraint. Moreover, a novel self-organized clustering method is designed to improve the system throughput while meeting the PF constraint. Simulation results suggest that the proposed clustering method is effective under various system configurations.
Yu-Kwong KwokEmail:
  相似文献   
2.
On exploiting task duplication in parallel program scheduling   总被引:1,自引:0,他引:1  
One of the main obstacles in obtaining high performance from message-passing multicomputer systems is the inevitable communication overhead which is incurred when tasks executing on different processors exchange data. Given a task graph, duplication-based scheduling can mitigate this overhead by allocating some of the tasks redundantly on more than one processor. In this paper, we focus on the problem of using duplication in static scheduling of task graphs on parallel and distributed systems. We discuss five previously proposed algorithms and examine their merits and demerits. We describe some of the essential principles for exploiting duplication in a more useful manner and, based on these principles, propose an algorithm which outperforms the previous algorithms. The proposed algorithm generates optimal solutions for a number of task graphs. The algorithm assumes an unbounded number of processors. For scheduling on a bounded number of processors, we propose a second algorithm which controls the degree of duplication according to the number of available processors. The proposed algorithms are analytically and experimentally evaluated and are also compared with the previous algorithms  相似文献   
3.
In a code-division multiple access (CDMA)-based wireless communication system, forward link is power limited and reverse link is interference limited. With power control and statistical multiplexing, voice services can be supported reasonably well. However, for high data-rate services, a more comprehensive scheduling mechanism is needed in order to achieve a high capacity while satisfying the forward and reverse link constraints. We formulate the high data-burst scheduling as a integer programming problem using a generic CDMA system model. We also suggest an optimal algorithm for generating scheduling solutions. With cdma2000 system details plugged in the proposed algorithm, it is found that our algorithm considerably outperforms several fast heuristics, including equal sharing, first-come-first-served, longest delay first, and shortest burst first.  相似文献   
4.
Providing on-demand data access in client-server wireless networks is an important support to many interesting mobile computing applications. Caching frequently accessed data by mobile clients can conserve wireless bandwidth and battery power, at the expense of some system resources to maintain cache consistency. The basic cache consistency strategy is the use of periodic invalidation reports (IRS) broadcast by the server. Recently, IR-based approaches have been further improved by using additional updated invalidation reports (UIRs) (i.e., the IR+UIR algorithm) to reduce the long query latency. However, the performance of the IR+UIR approach in a practical system is still largely unknown. Specifically, previous results are based on two impractical simplifying assumptions: 1) broadcast traffic is error-free and 2) no other downlink traffic (e.g., voice) exists in the system. The first assumption is clearly unrealistic as signal propagation impairments (e.g., multipath fading) and, hence, packet reception failures are inevitable in a practical situation. The second assumption is also inapplicable in real life because mobile devices are usually multipurposed (e.g., a mobile phone equipped with a browser may be used for Web surfing while having a phone conversation). In this paper, we first study the performance of the IR+UIR approach under a realistic system model: The quality of the wireless channel is time-varying, and there are other downlink traffics in the system. Our simulation results show that query delay significantly increases as a result of broadcast error and the additional downlink traffics experience longer delay due to extended broadcast period. Exploiting link adaptation (i.e., transmission rate is adjusted dynamically according to channel quality), we then propose three schemes to tackle these two problems. Our results indicate that the proposed schemes outperform IR+UIR under a wide range of system parameters.  相似文献   
5.
In many practical scenarios, wireless devices are autonomous and thus, may exhibit non-cooperative behaviors due to self-interests. For instance, a wireless cellular device may be programmed to report bogus channel information to gain resource allocation advantages. Such non-cooperative behaviors are highly probable as the device’s software can be modified by the user. In this paper, we first analyze the impact of these rationally selfish behaviors on the performance of packet scheduling algorithms in time-slotted wireless networks. Using a mixed strategy game model, we show that the traditional maximum rate packet scheduling algorithm can cause non-cooperative devices to converge to highly inefficient Nash equilibria, in which the wireless channel resources are significantly wasted. By using a repeated game to enforce cooperation, we further propose a novel game theoretic algorithm that can lead to an efficient equilibrium.  相似文献   
6.
Ultra wideband (UWB) systems are currently an important wireless infrastructure for efficient short-range communications and mobile applications. To improve the system efficiency while guaranteeing the radio link level quality of services, the transmission rate and power of the mobile nodes in UWB based infrastructure networks can be dynamically adjusted by executing an optimization algorithm at the access points (APs). In this paper, we present a cross layer rate and power allocation algorithm based on the multilayer model of time hopping (TH) pulse position modulation (PPM) UWB multimedia networks. We consider the performance of the TCP protocol under the proposed cross layer allocation scheme in various realistic UWB based infrastructure networking scenarios.  相似文献   
7.
Triggered by the ever increasing advancements in processor and networking technology, a cluster of PCs connected by a high-speed network has become a viable and cost-effective platform for the execution of computation intensive parallel multithreaded applications. However, there are two research issues to be tackled in the scheduling problem for PC cluster computing: (1) how to reduce the communication overhead of executing a multithreaded application on the cluster; (2) how to exploit the heterogeneity, which is unavoidable in an evolving PC cluster, for the application. In this paper, we propose to use a duplication based approach in scheduling tasks/threads to a heterogeneous cluster of PCs. In duplication based scheduling, critical tasks are redundantly scheduled to more than one machine, in order to reduce the number of inter-task communication operations. The start times of the succeeding tasks are also reduced. The task duplication process is guided given the system heterogeneity in that the critical tasks are scheduled or replicated in faster machines. The algorithm has been implemented in our experimental application parallelization system for generating multithreaded parallel code executable on a cluster of Pentium PCs. Our experiments, using three numerical applications and one protocol processing kernel (multithreading per request), have indicated that heterogeneity of PC cluster is indeed useful for optimizing the execution of parallel multithreaded programs.  相似文献   
8.
To efficiently support tetherless applications in ad hoc wireless mobile computing networks, a judicious ad hoc routing protocol is needed. Much research has been done on designing ad hoc routing protocols and some well-known protocols are also being implemented in practical situations. However; one major imperfection in existing protocols is that the time-varying nature of the wireless channels among the mobile-terminals is ignored; let alone exploited. This could be a severe design drawback because the varying channel quality can lead to very poor overall route quality in turn, resulting in low data throughput. Indeed, better performance could be achieved if a routing protocol dynamically changes the routes according to the channel conditions. In this paper, we first propose two channel adaptive routing protocols which work by using an adaptive channel coding and modulation scheme that allows a mobile terminal to dynamically adjust the data throughput via changing the amount of error protection incorporated. We then present a qualitative and quantitative comparison of the two classes of ad hoc routing protocols. Extensive simulation results indicate that channel adaptive ad hoc routing protocols are more efficient in that shorter delays and higher rates are achieved, at the expense of a higher overhead in route set-up and maintenance.  相似文献   
9.
A major cost in retrieving multimedia data from multiple sites is the cost incurred in transferring multimedia data objects (MDOs) from different sites to the site where the query is initiated. The objective of a data allocation algorithm is to locate the MDOs at different sites so as to minimize the total data transfer cost incurred in executing a given set of queries. The optimal allocation of MDOs depends on the query execution strategy employed by a distributed multimedia system while the query execution strategy optimizes a query based on this allocation. We fix the query execution strategy and develop a site-independent MDO dependency graph representation to model the dependencies among the MDOs accessed by a query. Given the MDO dependency graphs as well as the set of multimedia database sites, data transfer costs between the sites, the allocation limit on the number of MDOs that can be allocated at a site, and the query execution frequencies from the sites, an allocation scheme is generated. We formulate the data allocation problem as an optimization problem. We solve this problem with a number of techniques that broadly belong to three classes: max-flow min-cut, state-space search, and graph partitioning heuristics. The max-flow min-cut technique formulates the data allocation problem as a network-flow problem, and uses a hill-climbing approach to try to find the optimal solution. For the state-space search approach, the problem is solved using a best-first search algorithm. The graph partitioning approach uses two clustering heuristics, the agglomerative clustering and divisive clustering. We evaluate and compare these approaches, and assess their cost-performance trade-offs. All algorithms are also compared with optimal solutions obtained through exhaustive search. Conclusions are also made on the suitability of these approaches to different scenarios  相似文献   
10.
As tetherless multimedia computing environments are becoming much desired, broadband wireless communication infrastructures for providing wireless multimedia services will play an important role, and thus, are expected to proliferate. However, despite much research efforts have been expended, the multiple access control of the precious bandwidth remains a challenging problem because of the existence of two common drawbacks in the state-of-the-art protocols: (1) channel condition is ignored or not exploited, and (2) inflexible or biased time slots allocation algorithms are used. Indeed, existing protocols mostly ignore the burst errors due to fading and shadowing, which are inevitable in a mobile and wireless communication environment. A few protocols take into account the burst errors but just handle the errors in a passive manner. Most of the existing protocols employ an inflexible or biased allocation algorithm such that over-provisioning may occur for a certain class of users at the expense of the poor service quality received by other users. In this paper, a new MAC protocol, called SCAMA (synergistic channel adaptive multiple access) is proposed. The proposed protocol works closely with the underlying physical layer in that through observing the channel state information (CSI) of each mobile user, the MAC protocol first segregates a set of users with good CSI from requests gathered in the request contention phase of an uplink frame. The MAC protocol then judiciously allocates information time slots to the users according to the respective traffic types, CSI, urgency, and throughput, which are collectively represented by a novel and flexible priority function. Despite that contention request queue is not used in the protocol, the SCAMA protocol is robust in that it can avoid the congestion collapse which occur in other protocols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号