首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   14篇
  国内免费   1篇
化学工业   19篇
金属工艺   18篇
机械仪表   15篇
建筑科学   4篇
能源动力   6篇
轻工业   22篇
石油天然气   2篇
无线电   3篇
一般工业技术   35篇
冶金工业   15篇
自动化技术   14篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   6篇
  2019年   4篇
  2018年   4篇
  2017年   8篇
  2016年   9篇
  2015年   7篇
  2014年   5篇
  2013年   17篇
  2012年   17篇
  2011年   21篇
  2010年   8篇
  2009年   17篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2003年   1篇
  2002年   2篇
  1998年   4篇
  1997年   1篇
  1976年   1篇
排序方式: 共有153条查询结果,搜索用时 15 毫秒
1.
Multimedia Tools and Applications - Changes in appearance present a tremendous problem for the visual localization of an autonomous vehicle in outdoor environments. Data association between the...  相似文献   
2.
This work demonstrates the efficiency of almond gum polysaccharides (AGPs) as bioactive compounds. AGPs were first extracted using H2O2, in the presence of NaOH, at different times and temperatures. The optimal extraction conditions were 4% H2O2 and 2 N NaOH, for 7 h at 50 °C, leading to an extraction yield of 58.2% (w/w). After a purification step, the retained AGPs were characterised using high‐performance liquid chromatography showing a molecular weight of 99.3 kDa. The monosaccharide composition of AGPs were assessed using gas chromatography–mass spectrometry. AGPs were found to be a complex heteropolysaccharide with a repeating unit mainly composed of galactose, arabinose, xylose, mannose, rhamnose, and glucuronic acid with the respective ratios: 45:26:7:10:1:11. The acidic nature of the polysaccharide is due to the presence of glucuronic acid. Total antioxidant activity, free radical‐scavenging activity and reducing power assay of AGPs were investigated. The obtained results showed high antioxidant activities of AGPs. Furthermore, beyond 60 mg mL?1, AGPs exhibited bacterial growth inhibition for five pathogenic strains: Escherichia coli, Staphylococcus aureus, Enterococcus feacalis, Pseudomonas aeruginosa and Salmonella typhimurium.  相似文献   
3.
4.
Mechanical properties of alumina-fluorapatite composites with different titania additive amounts (0, 0.5, 1, 1.4, 2, 3, 4 and 5 wt%) have been investigated between 1200 and 1600℃. The optimum values of densification and mechanical properties of composites have been reached with 1.4 wt% of titania after the sintering process at 1500℃ for 1 h. Thus, the rupture strength of alumina-26.52 wt% Fap-1.4 wt% TiO2 reaches 75 MPa. At higher temperature and beyond 1.4 wt% TiO2 ,the densification and mechanical properties were hindered by the formation of both intergranular porosity and secondary phase. X-ray diffraction (XRD) analysis of alumina-Fap-TiO2 composites shows the formation of aluminium titanate (Al2O3-TiO2:Al2TiO5 ). The 27Al magic angle scanning nuclear magnetic resonance analysis of Al2O3-Fap-TiO2 composites reveals the presence of octahedral and pentahedral aluminium and novel environment relative to tetrahedral aluminium sites.  相似文献   
5.
Abstract: A very simple method is proposed to produce hydroxytyrosol, a commercially unavailable compound with well‐known biological properties which justify a potential commercial application. The 2‐phase Chemlali olive pomace is selected as substrate for chemical treatment. Different conditions of chemical treatment, including concentration of acid and alkaline solutions, time and temperature, were assayed. A high amount of hydroxytyrosol (1360 mg/kg of fresh 2‐phase olive pomace) was obtained using water bath after treatment at 80 °C for 90 min with 1 M of H3PO4. However, treatment of 2‐phase Chemlali olive pomace using autoclave apparatus could produce a large amount of hydroxytyrosol (1993.60 and 1515.88 mg/kg of fresh alperujo, 1 M acid and basic catalyst, respectively). By taking into consideration practical and economic aspects, acid‐catalyzed treatment was more effective using autoclave conditions, whereas the alkali catalyzed conditions were not very suitable. This study could provide useful information for industry to produce the potentially bioactive compound. Practical Application: The 2‐phase Chemlali olive pomace is selected as substrate for chemical treatment. Treatment of “alperujo” using water bath or autoclave apparatus was carried out. A high amount of hydroxytyrosol was obtained using autoclave apparatus.  相似文献   
6.
7.
The aim of this work was to investigate the effect of almond gum as dietary fibre source in enhancing the wheat bread quality. Different amounts of almond gum (2%, 5% and 10% (w/w)) were used in bread formulation. The volume, texture, crust and crumb colour, as well as the sensorial properties, were evaluated and compared to control (without almond gum). The obtained results showed that almond gum addition enhanced significantly the volume of bread. The highest volume was obtained using 2% almond gum concentration with 23.6% increase, compared to control. Using almond gum in bread formulation improved considerably its texture with a notable decrease in hardness by 61.7% and 42.5% when using 2% and 5% almond gum, respectively. The sensory analysis scores showed that the better overall acceptability was found for breads supplemented with 2% almond gum, as compared to control and breads supplemented with 5% or 10% almond gum.  相似文献   
8.
In order to optimize the metallurgical quality of advanced high strength steels for automotive applications, the present study aims at understanding damage mechanisms involved in air-bending of two low alloy TRansformation Induced Plasticity (TRIP)-aided steels. Air-bending tests were performed together with metallographic investigations of damage development in bent specimens. In order to assess the role of hard bands induced by chemical segregations, air-bending tests on specimens with various locations of the main hard band (with respect to the neutral fibre) were performed. Cracking initiates from the outer surface or from just below, mainly by decohesion between ferrite and secondary (martensite) phases, at hard bands located close to the outer surface. From these examinations, together with a simple kinematics analysis of bending, a quantitative relationship between cracking, local thickness of hard band and local “mesoscopic” strain is proposed.  相似文献   
9.
Since industry is rapidly developing, either locally or globally, manufacturers witness harder challenges due to the growing competitivity. This urges them to better consider the four factors linked to production and output: quality, quantity, cost and price, quality being of course the most important factor which constitutes their main concern. Efforts will be concentrated??in this research??on improving the quality and securing more accuracy for a machined surface in ball-end milling. Quality and precision are two essential criteria in industrial milling. However, milling errors and imperfections, due mainly to the cutting tool deflection, hinder the full achieving of these targets. Our task, all along this paper, consists in studying and realizing the simulation of the deflected cutting tool trajectory, by using the methods which are available. In a future stage, and in the frame of a deeper research, the simulation process will help to carry out the correction and the compensation of the errors resulting from the tool deflection. The corrected trajectory which is obtained by the method mirror will be sent to the machine. To achieve this goal, the next process consists??as a first step??in selecting a model of cutting forces for a ball-end mill. This allows to define??later on??the behavior of this tool, and the emergence of three methods namely the analytical model, the finite elements method, and the experimental method. It is possible to tackle the cutting forces simulation, all along the tool trajectory, while this latter is carrying out the sweeping of the part to be machined in milling and taking into consideration the cutting conditions, as well as the geography of the workpiece. A simulation of the deflected cutting tool trajectory dependent on the cutting forces has been realized.  相似文献   
10.
Cold uniaxial pressing of powder into a green body is a common forming process used in ceramic and pharmaceutical industries. Argillaceous particles are used as a model system to investigate granule failure during compaction. Indeed, the volume enclosed between the die and punches is reduced and the powder consolidates until a final height is obtained or a prescribed compacting pressure is reached. Desired properties of the green body are high strength, uniform density, no defects and fracture. In this work an experimental investigation has been focused on the ‘cracking cone’ fracture in powder compacts. This includes studies of crack propagation and determination of operating conditions to avoid the green body fracture. The numerical modelling is implemented using a finite element method based on the Von Mises criterion. A case of simulation is presented to demonstrate the ability of the model to compute the distribution of the relative stresses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号