首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
电工技术   6篇
自动化技术   1篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2012年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
为降低风电场-柔性直流并网系统在交流主网发生低电压故障时的穿越成本,提出一种直流耗能装置与风电机组卸荷电路协同作用的电网故障穿越策略,在电网故障时送端换流器配合风电场快速降低直流功率输出.由于直流耗能装置仅在故障发生的前期、风电场输出功率下降前起到限制直流电压升高的作用,该策略能够显著降低直流耗能装置的体积.在此基础上,该策略将直流耗能装置中的耗能电阻分散置入到受端模块化多电平换流器中,进一步降低了卸荷成本.最后,在PSCAD/EMTDC仿真软件中,构建了风电场-柔性直流并网系统的仿真算例,对所提出的故障穿越方法的正确性和有效性进行了验证.  相似文献   
2.
针对常规跟网型控制下柔性直流输电系统不具备电网频率支撑能力、弱电网运行能力差的问题,提出了一种柔性直流输电系统的双端构网型控制策略。利用直流电容的动力学特性,将柔性直流输电系统模拟为同步电动机-连轴-同步发电机运行,使其具备良好的弱电网运行能力与电网主动支撑能力。在此基础上,设计了柔性直流输电系统的电网故障穿越策略。在PSCAD/EMTDC软件中进行仿真验证,结果表明所提柔性直流输电系统的双端构网型控制策略具备弱电网适应能力、快速潮流调节能力、电网频率主动支撑能力以及电网故障穿越能力。  相似文献   
3.
采用柔性直流输电技术送出是大规模海上风电的发展趋势。由于电流控制型的海上风电–柔直并网系统隔离了风电场的惯量,电压源控制方式成为应对新能源主导电力系统稳定运行的一种有效途径。现有海上风电–柔直并网系统的电压源控制研究多集中于控制实现与稳态特性方面,而针对该系统故障控制方面的研究十分匮乏。该文提出一种具备故障穿越能力的海上风电–柔直并网系统自同步电压源控制策略。在受端换流器中,通过子模块能量与同步发电机转子的类比及直流侧的解耦控制,兼顾了对直流母线电压的灵活控制和对电网频率的无锁相环自同步,并改善了通过直流母线电压向送端换流器传递电网频率时的抗扰性能。送端换流器从直流电压中提取电网频率并镜像到其交流侧,辅助海上风电场实现对电网的惯量响应。进一步地,设计受端换流器的电网故障穿越策略,在实现对输出电流限幅的同时,确保了受端换流器的功角稳定。最后,在PSCAD/EMTDC软件中通过仿真验证所提控制方法的有效性。  相似文献   
4.
笔者所说的竞速式寻迹智能车,是指能自动寻找并按给定的赛车道行驶、能以最快速度达到终点的竞赛车。  相似文献   
5.
采用柔性直流送出是未来大规模远距离风电并网的主流趋势。随着相工程的不断投运,风电场-柔性直流并网系统的控制与保护技术已成为当下的研究焦点。本文从实际工程出发,针对系统结构、稳态控制、小干扰稳定性、主动频率响应、交直流协调运行及暂态控制等几方面,综述了风电场-柔性直流并网系统的研究成果及发展现状,介绍了当前工程中的技术难点,并对未来的研究方向做了展望。  相似文献   
6.
随着深远海风电开发利用的快速发展,风电直流送出与并网成为技术热点.针对风电交流汇集直流送出、低成本直流送出、多端直流送出和多电压等级直流送出技术,全面论述了海上风电直流送出技术在系统拓扑、装备、控制与保护方面的现状和存在的问题,以及研究热点和发展趋势,指出海上风电场集群共享直流集中送出是近期的主流方案,系统的宽频振荡是亟待解决的问题,使整体系统体现主导电源特征是关注的热点.为降低成本,基于二极管整流送出的技术路线具有良好的预期,但纯二极管整流送出需要风电机组的改进.海上风电多端直流并网系统的成熟依赖于低成本直流断路器和暂态控制保护技术的进步,而海上风电多电压等级直流并网系统尚缺乏直流变压器等关键装备的支撑.  相似文献   
7.
电压源风电机组可实现对电网频率和电压的自主快速支撑,是构建新型电力系统的关键装备。惯性同步控制方法通过直流母线电压对电网频率的自主感知同步电网和进行频率响应,是实现电压源风电机组的一种有效方法。然而,当电网暂态故障时,网侧变换器因输出功率受限无法控制直流母线电压稳定,打破了直流母线电压感知电网频率的机制,使得网侧变换器与电网失去同步;此外,惯性同步控制方法无电流内环,在暂态故障下容易出现过电流导致机组因自我保护而退出运行。针对上述问题,该文提出一种应对电网故障的电压源风电机组控制策略,具备暂态故障期间网侧变换器对电网同步的能力,采用电网电压和直流电压复合判断法控制同步环节准确切换,通过电压电流级联控制结构和虚拟阻抗自适应调节器有效抑制了暂态过电流,搭建了2.3MW永磁直驱风电机组的Bladed+RTDS硬件在环实验平台,验证了所提控制策略的有效性。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号