首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  国内免费   1篇
电工技术   1篇
自动化技术   3篇
  2021年   1篇
  2019年   1篇
  2014年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
In this paper, a robust model-free controller for a grid-connected photovoltaic (PV) system is designed. The system consists of a PV generator connected to a three-phase grid by a DC/AC converter. The control objectives of the overall system are to extract maximum power from the PV source, to control reactive power exchange and to improve the quality of the current injected into the grid. The model-free control technique is based on the use of an ultra-local model instead of the dynamic model of the overall system. The local model is continuously updated based on a numerical differentiator using only the input–output behavior of the controlled system. The model-free controller consists of a classical feedback controller and a compensator for the effects of internal parameter changes and external disturbances. Simulation results illustrate the efficiency of the controller for grid-connected PV systems.  相似文献   
2.
A robust sliding mode controller for a grid‐connected photovoltaic source is proposed in this paper. The objective of the presented control scheme is to force both the output voltage of the photovoltaic PV source and the power factor at the inverter output to follow a certain trajectory reference. The main idea is to apply the robust sliding mode controller directly to the nonlinear state model of the system composed of the PV source and the inverter with its input and output filters. In order to operate the PV system at the maximum power point and to satisfy the environmental factors, such as solar irradiance and temperature, we included a rigorous maximum power point tracker based on an artificial neural network. Simulation results are presented to illustrate the performance of the proposed control scheme. In addition, we show that the grid current satisfies the harmonic limits of the IEEE standard for interconnecting distributed energy sources with electric power systems.  相似文献   
3.
This paper addresses the problem of linear adaptive control for a class of uncertain continuous-time single-input single-output (SISO) nonaffine nonlinear dynamic systems. Using the implicit function theory, the existence of an ideal controller which can achieve control objectives is firstly demonstrated. However, this ideal controller cannot be known and computed even if the system model is well known. The aim of our work is to construct this unknown ideal controller using a simple linear controller with the free parameters updated online by a stable adaptation mechanism designed to minimise the error between the unknown ideal controller and the used linear controller. Since the mathematical model of the system is assumed unknown in this work, the proposed control scheme can be regarded as a simple model free controller for the studied class of nonaffine systems. We prove that the closed-loop system is stable and all the signals are bounded. An application of the proposed linear adaptive controller for a nonaffine system is illustrated through the simulation results to demonstrate the effectiveness of the proposed control scheme.  相似文献   
4.
The aim of this paper is to develop a neuro-fuzzy-sliding mode controller (NFSMC) with a nonlinear sliding surface for a coupled tank system. The main purpose is to eliminate the chattering phenomenon and to overcome the problem of the equivalent control computation. A first-order nonlinear sliding surface is presented, on which the developed sliding mode controller (SMC) is based. Mathematical proof for the stability and convergence of the system is presented. In order to reduce the chattering in SMC, a fixed boundary layer around the switch surface is used. Within the boundary layer, where the fuzzy logic control is applied, the chattering phenomenon, which is inherent in a sliding mode control, is avoided by smoothing the switch signal. Outside the boundary, the sliding mode control is applied to drive the system states into the boundary layer. Moreover, to compute the equivalent controller, a feed-forward neural network (NN) is used. The weights of the net are updated such that the corrective control term of the NFSMC goes to zero. Then, this NN also alleviates the chattering phenomenon because a big gain in the corrective control term produces a more serious chattering than a small gain. Experimental studies carried out on a coupled tank system indicate that the proposed approach is good for control applications.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号