首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
化学工业   1篇
建筑科学   6篇
  2022年   1篇
  2020年   3篇
  2019年   3篇
排序方式: 共有7条查询结果,搜索用时 327 毫秒
1
1.
2.
为提升寒冷地区建筑结构的实时损伤监测效果,研究了硫酸盐-冻融循环作用下采用短切碳纤维与铁尾矿作为导电材料制备的自感应水泥砂浆的耐久与压敏性能。利用质量损失、相对动弹性模量及抗压强度损失为依据探讨耐久性能变化规律,以电阻率变化率-压应力的相关关系反映硫酸盐-冻融循环作用下压敏性能发展规律并解释其导电机理,并采用平均应力敏感系数评价硫酸盐-冻融循环作用下压敏性能稳定性。结果表明,碳纤维体积掺量为0.4%、铁尾矿替代率为30%(质量分数)组合掺入水泥砂浆时,其耐久性能与压敏性能均达到较高水平,但硫酸盐-冻融循环造成的孔洞与裂缝会导致铁尾矿碳纤维水泥砂浆电阻率变化率-压应力呈一阶指数衰减关系,可采用Plane模型来反映平均应力敏感系数衰减程度与冻融循环次数、铁尾矿替代率之间良好的相关关系。  相似文献   
3.
为了研究玄武岩纤维对RAC早期抗压强度的影响,对10组120个再生粗骨料替代率为50%的玄武岩纤维RAC进行试验研究,分析了不同掺量以及不同掺量长度的玄武岩纤维对RAC早期抗压强度的影响,研究结果表明:在RAC中掺入定量的纳米SiO_2后再掺入不同量不同长度的玄武岩纤维,随着玄武岩纤维掺量及掺量长度的增加其RAC立方体抗压强也在增加,其中玄武岩纤维掺量的变化对RAC抗压强度的影响比掺量长度的变化对RAC抗压强度的影响明显;玄武岩掺量一定时,随着玄武岩纤维掺量的长度的增加RAC抗压强度也随之增加;并且当玄武岩纤维掺量和掺量长度均增加时,随着龄期的增加,其后期28 d时的各掺量下玄武岩纤维掺量长度为18、14 mm两者的抗压强度越来越接近;各玄武岩纤维掺量下RAC不同龄期下的增长速度呈现先快后慢的大体趋势。通过对玄武岩纤维RAC进行研究,为工程实际运用提供借鉴意义。  相似文献   
4.
通过16组256块试验对铁尾矿砂不同取代率和再生粗骨料不同服役年限的再生混凝土立方体抗压强度、轴心抗压强度和劈裂抗拉强度进行了试验研究。研究结果表明:对于立方体、轴心抗压强度,在不同铁尾矿砂取代率的情况下均超过普通混凝土对应的强度;对于劈裂抗拉强度,当在30%取代率下,RAC-1、RAC-2、RAC-3分别比普通混凝土增加了13.38%、11.15%、11.46%,其强度也都超过普通混凝土的强度。通过对试件的微观形貌分析,只有30%的铁尾矿和30%的再生骨料能达到最佳的粒径分布,从而提高了混凝土的内部密实度和强度。  相似文献   
5.
为了研究纳米SiO_2对RAC抗压强度和劈裂抗拉强度的影响,对10组180个再生粗骨料替代率为30%和50%的纳米SiO_2掺合料RAC进行试验研究,分析了不同纳米SiO_2掺量以及不同掺再生粗骨料对RAC抗压强度和劈裂抗拉强度的影响,研究结果表明:各龄期下,当纳米SiO_2掺量相等时,再生粗骨料替代率50%的RAC抗压强度小于替代率为30%RAC的抗压强度,其中再生骨料替代率为30%的RAC抗压强度在纳米SiO_2掺量为0.8%达到最大值,而再生骨料替代率为50%的RAC抗压强度在纳米SiO_2掺量为1.5%达到最大值;RAC中掺入不同量的纳米SiO_2,其各龄期下抗压强度和劈裂抗拉强度基本呈现先增长后下降的趋势;抗压强度和劈裂抗拉强度在龄期和纳米SiO_2掺量一定的基础上,抗压强度和劈裂抗拉强度基本呈正相关;再生粗骨料替代率30%和50%两种RAC中,掺入不同量的纳米SiO_2,其抗压强度和劈裂抗拉强度在前14d增长较快,后期增长较为缓慢。证明纳米SiO_2对于RAC早期强度影响较大。通过对纳米SiO_2掺合料RAC进行研究,为工程实际运用提供借鉴意义。  相似文献   
6.
试验主要研究了不同掺量铁尾矿砂对再生骨料混凝土在硫酸盐干湿循环作用下质量损失率、抗压耐腐蚀系数、超声声速等性能变化的影响。研究结果表明:基于再生粗骨料替代率为30%的情况下,当掺量30%铁尾矿砂等量替代细骨料时,在硫酸盐干湿循环50次时可以使再生骨料混凝土质量损失大大减少,抗压耐腐蚀系数达到最大。当掺量10%铁尾矿砂等量替代细骨料时,其超声声速值高于其他掺量铁尾矿再生混凝土的超声声速值。  相似文献   
7.
为了研究掺合料对RAC抗冻性的影响,对4组共48个100 mm×100 mm×100 mm的立方体试件,标准养护28 d后,分别进行抗压试验和劈裂拉伸试验,同时采用"快冻法",对掺合料RAC冻融循环下质量损失率和相对动弹性模量损失进行研究,研究结果发现:当粉煤灰掺量10%基础上,再掺入10%的硅粉,其RAC抗压强度远是普通RAC抗压强度的1.5倍,同时劈裂抗拉强是普通RAC的1.83倍,相比于普通RAC其力学性能均有所改善。并且,随着粉煤灰替代率的增加抗压强度与劈裂抗拉强度减小,但在粉煤灰掺量为20%时,其抗压强度与劈裂抗拉强度均高于普通RAC;经200次冻融循环后,10%粉煤灰+10%硅粉RAC的质量损失率分别是普通RAC、单掺20%粉煤灰RAC、复掺15%粉煤灰+5%硅粉RAC的27.3%、47.5%、87.3%,其质量损失率从小到大的排序依次是:复掺10%粉煤灰+10%硅粉RAC、复掺15%粉煤灰+5%硅粉RAC、单掺20%粉煤灰RAC、普通RAC;相对动弹性模量损失随着冻融循环次数的增加呈现递减趋势,其中在整个冻融循环过程中普通RAC相对动弹性模量下降速度最快,当冻融循环次数大于150次时,复掺10%粉煤灰+10%硅粉RAC相对动弹性模量均高于复掺15%粉煤灰+5%硅粉RAC、单掺20%RAC、普通RAC的相对动弹性模量。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号