首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
化学工业   4篇
无线电   1篇
一般工业技术   2篇
  2024年   1篇
  2023年   5篇
  2015年   1篇
排序方式: 共有7条查询结果,搜索用时 71 毫秒
1
1.
从低阶煤中提取煤炭黄腐酸对于高效利用煤炭资源,提升低阶煤高附加值具有重要意义。文章介绍了黄腐酸的种类、来源、组成及理化性质,概述了碱溶酸析法、硫酸丙酮法、离子交换树脂法、化学氧化法和电渗析法的提取原理、特点及研究现状,总结了煤炭黄腐酸在化工(吸附、催化、电容器、电池)、医药、农业等领域的研究现状,并针对煤炭黄腐酸组成和结构的确定、提取方法的改进以及表面官能团的调控进行了展望。  相似文献   
2.
为了改善Fe3O4作为锂离子电池负极材料时循环稳定性差的问题,以铁基沸石咪唑酯框架结构材料(Fe-ZIF)为前驱体,使用多巴胺通过聚合反应与其复合,再与石墨烯通过静电吸附作用组装,经过煅烧碳化,制备了Fe3O4@NC/G复合材料。研究结果表明,多巴胺与石墨烯的引入有效提高了Fe3O4在充放电过程中的电化学稳定性。在0.1 A·g-1电流密度下,充放电循环30圈,Fe3O4@NC/G的放电比容量为1005.6 mAh·g-1。当电流密度为2 A·g-1时,经过300圈循环,其放电比容量仍有838.3 mAh·g-1。Fe3O4@NC/G复合材料优异的电化学性能归因于独特的结构设计,这对其他负极材料的构筑提供了一定的参考价值。  相似文献   
3.
CO2资源化利用是当前能源与环境领域的研究热点,光催化还原CO2作为一种绿色、温和的转化技术备受关注,其中提高光催化转化过程中光利用效率和降低载流子复合速率是促进CO2光催化还原过程的关键。利用柠檬酸、乙二胺和原卟啉为原料,通过一步水热法制备原卟啉碳点,并考察了其光催化还原CO2性能。研究表明,碳点为3.3 nm左右的球形颗粒,原卟啉以共价键的形式成功引入碳点中,并且碳点中保留了原卟啉结构中的共轭大π键的骨架,增强了碳点催化剂对400~500 nm的光的吸收,降低了光催化还原CO2过程中的载流子复合速率。光催化还原CO2性能测试表明,以含有质量分数为1%原卟啉的碳点作为光催化剂转化CO2为CH3OH的产率达到285.5μmol·g-1·h-1,是未添加原卟啉催化剂产率的2.16倍。  相似文献   
4.
以高软化点煤沥青和热塑性酚醛树脂为主要原料,机械混合均匀后,采用悬浮法制备沥青/树脂基复合球形活性炭。使用扫描电子显微镜(SEM)、N2物理吸脱附仪、颗粒强度测定仪,对复合球的表面形貌、孔道结构和机械强度进行表征。实验结果表明:树脂的加入不仅能够拓宽球形活性炭的孔径分布,而且能够有效地提高球形活性炭的机械强度。树脂含量为30%的球形活性炭BET表面积为1049m2/g,总孔容为0.62cm3/g,平均孔径为8.8nm,同时机械强度达6.2N。通过苯的静态吸脱附测试研究了沥青树脂基球形活性炭的吸附性能,结果表明:复合球形活性炭基本上保持了沥青基球形活性炭的快速吸脱附性能,树脂的加入并没有明显延长复合球形活性炭对苯的吸脱附时间。  相似文献   
5.
以煤为原料制备石墨烯是一种非常有前景的煤炭材料化、高值化利用途径。针对煤岩组分的组成、结构差异,探明煤岩组分在制备氧化石墨烯过程中的演变规律,是开发煤基石墨烯制备技术的理论基础。利用重选法富集低变质神府煤中镜质组和惰质组,并将富集煤岩组分通过高温石墨化得到石墨化碳,以石墨化碳为前驱体通过改良的Hummers氧化法制备煤基氧化石墨烯。利用元素分析、红外光谱、X射线衍射、拉曼光谱、扫描电镜、透射电镜以及原子力显微镜等研究煤及其煤岩组分在制备氧化石墨烯过程中的组成和结构演变规律。结果表明炭化处理使煤有机大分子结构向无定形碳结构转变,高温石墨化使煤有机大分子结构向石墨碳结构转变;惰质组呈片状结构且分子结构中芳香结构单元较多导致石墨化碳微晶尺寸较大,高温石墨化处理后其拉曼光谱的(AD1/AG)值为0.382,镜质组高温石墨化处理后的(AD1/AG)值为0.686,原煤高温石墨化处理后的(AD1/AG)值为0.864;利用富惰质组得到的石墨化碳制备氧化石墨烯厚度尺寸约...  相似文献   
6.
采用电沉积技术将α-Fe2O3均匀负载在静电纺丝炭纳米纤维上,制备α-Fe2O3/炭纳米纤维复合材料。利用扫描电镜(SEM)、X射线衍射仪(XRD)以及物理吸附对复合材料进行形貌和结构分析,并通过恒电流充放电、循环伏安、交流阻抗技术考察其作为超级电容器电极材料的电化学性能。结果表明:α-Fe2O3/炭纳米纤维(α-Fe2O3/CNF-3)复合材料相比单纯炭纳米纤维(CNF)有着更丰富的介孔结构,有利于离子和电子的低电阻传输。同时,α-Fe2O3/CNF-3复合电极材料结合了双电层电容和赝电容的优良性能,在电流密度为1A/g下,电解液为6mol/L KOH时,其比电容值可达330.1F/g,是炭纳米纤维电极的3.76倍,并且经过8000次循环后仍能保持91.45%,具有较好的稳定性。  相似文献   
7.
沥青是由富含稠环芳烃的系列碳氢化合物及其非金属衍生物组成的复杂混合物,具有较高的碳含量。开发沥青作为炭材料前体,用于制备超级电容器炭电极材料,既拓展了沥青的应用市场及提升其附加值,更是响应国家对于新型能源利用的需求。本文首先对超级电容器的储能机理进行了阐述,探讨了影响超级电容器用炭材料电化学性能的结构因素及规律,概述了沥青的组成、结构模型、来源及其应用。然后综述了沥青基多孔炭用作超级电容器电极材料的研究进展,并对活化法、模板法及熔盐法等方法制备沥青基多孔炭的特点与进展进行了分析,着重对沥青基多孔炭材料的改性研究进行了总结。最后指出了沥青基多孔炭材料作为超级电容器电极材料的发展优势及不足,建议对沥青原料进行预处理联合炭化后脱除金属杂原子,以获得稳定长循环寿命的电容炭;加强对沥青中四组分炭化成炭规律的研究,以提高沥青基超容炭材料的成炭率;KOH活化法与其他活化方法相结合,以期在获得高性能活性炭基础上减少对设备的损耗与环境的影响。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号