首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22371篇
  免费   1099篇
  国内免费   310篇
电工技术   505篇
综合类   543篇
化学工业   3863篇
金属工艺   545篇
机械仪表   776篇
建筑科学   912篇
矿业工程   181篇
能源动力   649篇
轻工业   2313篇
水利工程   249篇
石油天然气   175篇
武器工业   27篇
无线电   2536篇
一般工业技术   3149篇
冶金工业   3706篇
原子能技术   202篇
自动化技术   3449篇
  2023年   122篇
  2022年   148篇
  2021年   581篇
  2020年   336篇
  2019年   420篇
  2018年   490篇
  2017年   442篇
  2016年   518篇
  2015年   453篇
  2014年   663篇
  2013年   1227篇
  2012年   953篇
  2011年   1148篇
  2010年   872篇
  2009年   961篇
  2008年   920篇
  2007年   910篇
  2006年   793篇
  2005年   686篇
  2004年   739篇
  2003年   933篇
  2002年   1209篇
  2001年   1013篇
  2000年   563篇
  1999年   496篇
  1998年   1309篇
  1997年   849篇
  1996年   599篇
  1995年   428篇
  1994年   309篇
  1993年   348篇
  1992年   196篇
  1991年   157篇
  1990年   145篇
  1989年   137篇
  1988年   129篇
  1987年   112篇
  1986年   112篇
  1985年   150篇
  1984年   89篇
  1983年   94篇
  1982年   86篇
  1981年   103篇
  1980年   101篇
  1979年   63篇
  1978年   50篇
  1977年   102篇
  1976年   192篇
  1975年   52篇
  1973年   51篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Colorectal cancer (CRC) is the third most deadly cancer worldwide, and inflammatory bowel disease (IBD) is one of the critical factors in CRC carcinogenesis. IBD is responsible for an unphysiological and sustained chronic inflammation environment favoring the transformation. MicroRNAs (miRNAs) belong to a class of highly conserved short single-stranded segments (18–25 nucleotides) non-coding RNA and have been extensively discussed in both CRC and IBD. However, the role of miRNAs in the development of colitis-associated CRC (CAC) is less clear. The aim of this review is to summarize the major upregulated (miR-18a, miR-19a, miR-21, miR-31, miR-155 and miR-214) and downregulated (miR-124, miR-193a-3p and miR-139-5p) miRNAs in CAC, and their roles in genes’ expression modulation in chronic colonic-inflammation-induced carcinogenesis, including programmed cell-death pathways. These miRNAs dysregulation could be applied for early CAC diagnosis, to predict therapy efficacy and for precision treatment.  相似文献   
2.
The substantial increase in DNA sequencing efforts has led to a rapid expansion of available sequences in glycoside hydrolase families. The ever-increasing sequence space presents considerable opportunities for the search for enzymes with novel functionalities. In this work, the sequence-function space of glycoside hydrolase family 94 (GH94) was explored in detail, using a combined approach of phylogenetic analysis and sequence similarity networks. The identification and experimental screening of unknown clusters led to the discovery of an enzyme from the soil bacterium Paenibacillus polymyxa that acts as a 4-O-β-d -glucosyl-d -galactose phosphorylase (GGalP), a specificity that has not been reported to date. Detailed characterization of GGalP revealed that its kinetic parameters were consistent with those of other known phosphorylases. Furthermore, the enzyme could be used for production of the rare disaccharides 4-O-β-d -glucosyl-d -galactose and 4-O-β-d -glucosyl-l -arabinose. Our current work highlights the power of rational sequence space exploration in the search for novel enzyme specificities, as well as the potential of phosphorylases for rare disaccharide synthesis.  相似文献   
3.
Colorectal cancer (CRC) is a leading cause of cancer death worldwide, and about 20% is metastatic at diagnosis and untreatable. Increasing evidence suggests that the heterogeneous nature of CRC is related to colorectal cancer stem cells (CCSCs), a small cells population with stemness behaviors and responsible for tumor progression, recurrence, and therapy resistance. Growing knowledge of stem cells (SCs) biology has rapidly improved uncovering the molecular mechanisms and possible crosstalk/feedback loops between signaling pathways that directly influence intestinal homeostasis and tumorigenesis. The generation of CCSCs is probably connected to genetic changes in members of signaling pathways, which control self-renewal and pluripotency in SCs and then establish function and phenotype of CCSCs. Particularly, various deregulated CCSC-related miRNAs have been reported to modulate stemness features, controlling CCSCs functions such as regulation of cell cycle genes expression, epithelial-mesenchymal transition, metastasization, and drug-resistance mechanisms. Primarily, CCSC-related miRNAs work by regulating mainly signal pathways known to be involved in CCSCs biology. This review intends to summarize the epigenetic findings linked to miRNAome in the maintenance and regulation of CCSCs, including their relationships with different signaling pathways, which should help to identify specific diagnostic, prognostic, and predictive biomarkers for CRC, but also develop innovative CCSCs-targeted therapies.  相似文献   
4.
Bone formation starts near the end of the embryonic stage of development and continues throughout life during bone modeling and growth, remodeling, and when needed, regeneration. Bone-forming cells, traditionally termed osteoblasts, produce, assemble, and control the mineralization of the type I collagen-enriched bone matrix while participating in the regulation of other cell processes, such as osteoclastogenesis, and metabolic activities, such as phosphate homeostasis. Osteoblasts are generated by different cohorts of skeletal stem cells that arise from different embryonic specifications, which operate in the pre-natal and/or adult skeleton under the control of multiple regulators. In this review, we briefly define the cellular identity and function of osteoblasts and discuss the main populations of osteoprogenitor cells identified to date. We also provide examples of long-known and recently recognized regulatory pathways and mechanisms involved in the specification of the osteogenic lineage, as assessed by studies on mice models and human genetic skeletal diseases.  相似文献   
5.
The influence of surface topography on cellular behaviour and its importance for the development of three-dimensional scaffolds for bone tissue engineering are a topic of growing interest. To date, the introduction of topographical patterns into the surface of 3D porous ceramic scaffolds has proven difficult, due partly to the brittle nature of ceramic materials as well as the currently available fabrication technologies. In this study, a grooved pattern was introduced into the surface of 3D multilayer porous ceramic scaffolds by the chemical etching technique. The patterned scaffolds were characterised by X-Ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM-EDX) and Digital Holographic Microscopy (DHM). Their bioactivity was also evaluated in vitro by immersion in simulated body fluid (SBF) for 12 h, 1, 7, 14 and 21 days. Scaffolds were constituted mainly with a mixture of the calcium pyrophosphate (Ca2O7P2) and β-tricalcium phosphate (Ca?(PO?)?) phases. The pyrophosphate on the external layer was dissolved as a result of the etching process, leaving grooves on the surface. Ridges and grooves were nano-/micrometric, with dimensions of around 900 nm–1.5 μm in width and 200 nm–300 nm in depth. Moreover, the mechanical properties and bioactive capacity of the patterned scaffolds were not affected by chemical etching, making them suitable to be used in bone tissue engineering.  相似文献   
6.
The synthesis of new Xenes and their potential applications prototypes have achieved significant milestones so far. However, to date the realization of Xene heterostructures in analogy with the well known van der Waals heterostructures remains an unresolved issue. Here, a Xene heterostructure concept based on the epitaxial combination of silicene and stanene on Ag(111) is introduced, and how one Xene layer enables another Xene layer of a different nature to grow on top is demonstrated. Single-phase (4 × 4) silicene is synthesized using stanene as a template, and stanene is grown on top of silicene on the other way around. In both heterostructures, in situ and ex situ probes confirm layer-by-layer growth without intercalations and intermixing. Modeling via density functional theory shows that the atomic layers in the heterostructures are strongly interacting, and hexagonal symmetry conservation in each individual layer is sequence selective. The results provide a substantial step toward currently missing Xene heterostructures and may inspire new paths for atomic-scale materials engineering.  相似文献   
7.
Journal of Scheduling - We propose an algorithm selection approach and an instance space analysis for the well-known curriculum-based course timetabling problem (CB-CTT), which is an important...  相似文献   
8.
Multimedia Tools and Applications - The design of robots capable of operating autonomously in changing and unstructured environments, requires using complex software architectures in which,...  相似文献   
9.
Sarcopenia is defined as the age-related loss of skeletal muscle mass, quality, and strength. The pathophysiological mechanisms underlying sarcopenia are still not completely understood. The aim of this work was to evaluate, for the first time, the expression of NLRP3 inflammasome in bovine skeletal muscle in order to investigate the hypothesis that inflammasome activation may trigger and sustain a pro-inflammatory environment leading to sarcopenia. Samples of skeletal muscle were collected from 60 cattle belonging to three age-based groups. Morphologic, immunohistochemical and molecular analysis were performed to assess the presence of age-related pathologic changes and chronic inflammation, the expression of NLRP3 inflammasome and to determine the levels of interleukin-1β, interleukin-18 and tumor necrosis factor alpha in muscle tissue. Our results revealed the presence of morphologic sarcopenia hallmark, chronic lymphocytic inflammation and a type II fibers-selective NLRP3 expression associated to a significant decreased number of immunolabeled-fibers in aged animals. Moreover, we found a statistically significant age-related increase of pro-inflammatory cytokines such as interleukin-1β and interleukin-18 suggesting the activation of NLRP3 inflammasome. Taken together, our data suggest that NLRP3 inflammasome components may be normally expressed in skeletal muscle, but its priming and activation during aging may contribute to enhance a pro-inflammatory environment altering normal muscular anabolism and metabolism.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号