首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
电工技术   2篇
化学工业   6篇
无线电   2篇
一般工业技术   1篇
冶金工业   4篇
自动化技术   1篇
  2023年   1篇
  2020年   1篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2010年   2篇
  2006年   2篇
  2004年   1篇
  2002年   1篇
  1998年   3篇
  1976年   1篇
排序方式: 共有16条查询结果,搜索用时 93 毫秒
1.
The European Federation for Medicinal Chemistry (EFMC) created the Young Scientists Network (YSN) to support early-career medicinal chemists and chemical biologists. By doing this, it addressed the rapid changes taking place in the scientific community and in our society, such as the rise of social media, the evolution of the gender balance in the scientific population, and educational needs. Creating the YSN was also a way to ensure that the next generation of scientists would contribute to shaping EFMC's strategy, while recognizing and addressing their needs. The YSN was set up as a very dynamic concept, and has now developed to the point where its impact is evident. The activities it promotes complement EFMC's community support and scientific opportunities, rejuvenating the Federation and preparing it for the future. It also provides opportunities for many brilliant young scientists, who do not hesitate to invest time and energy in supporting our community and shaping their own future.  相似文献   
2.
3.
4.
We use three-dimensional self-consistent Kohn-Sham's equations coupled with Poisson's equation to investigate the electrical behavior of laterally coupled vertical quantum dots (LCVQD) for spin-qubit operation. The shape and the depth of the central gate are changed in different ways to correlate gate geometry with the coupling between the two quantum dots. Upon comparing LCVQD single-gate and the split-gate structures, we found that the two inherently different designs result in different energy barrier profiles leading to dissimilar wavefunction coupling between the two dots. Finally, we show that the doping concentrations in the layered structure could be optimized for practical two-qubit operation.  相似文献   
5.
15N NMR relaxation studies, analyses of NMR data to include chemical shifts, residual dipolar couplings (RDC), NOEs and HN–Hα coupling constants, and molecular dynamics (MD) simulations have been used to characterise the behaviour of lysozyme from bacteriophage lambda (λ lysozyme) in solution. The lower and upper lip regions in λ lysozyme (residues 51–60 and 128–141, respectively) show reduced 1H–15N order parameters indicating mobility on a picosecond timescale. In addition, residues in the lower and upper lips also show exchange contributions to T2 indicative of slower timescale motions. The chemical shift, RDC, coupling constant and NOE data for λ lysozyme indicate that two fluctuating β‐strands (β3 and β4) are populated in the lower lip region while the N terminus of helix α6 (residues 136–139) forms dynamic helical turns in the upper lip region. This behaviour is confirmed by MD simulations that show hydrogen bonds, indicative of the β‐sheet and helical secondary structure in the lip regions, with populations of 40–60 %. Thus in solution λ lysozyme adopts a conformational ensemble that will contain both the open and closed forms observed in the crystal structures of the protein.  相似文献   
6.
7.
Stopped-flow fluorescence and circular dichroism spectroscopy have been used in conjunction with quenched-flow hydrogen exchange labelling, monitored by electrospray ionization mass spectrometry, to compare the refolding kinetics of hen egg-white lysozyme at 20 degrees C and 50 degrees C. At 50 degrees C there is clear evidence for distinct fast and slow refolding populations, as observed at 20 degrees C, although folding occurs significantly more rapidly. The folding process is, however, substantially more cooperative at the higher temperature. In particular, the transient intermediate on the major refolding pathway at 20 degrees C, having persistent native-like structure in the alpha-helical domain of the protein, is not detected by hydrogen exchange labelling at 50 degrees C. In addition, the characteristic maximum in negative ellipticity and the minimum in fluorescence intensity observed in far UV CD and intrinsic fluorescence experiments at 20 degrees C, respectively, are not seen at 50 degrees C. Addition of 2 M NaCl to the refolding buffer at 50 degrees C, however, regenerates both the hydrogen exchange and optical properties associated with the alpha-domain intermediate but has no significant effect on the overall refolding kinetics. Together with previous findings, these results indicate that non-native interactions within the alpha-domain intermediate are directly responsible for the unusual optical properties observed during refolding, and that this intermediate accumulates as a consequence of its intrinsic stability in a folding process where the formation of stable structure in the beta-domain constitutes the rate-limiting step for the majority of molecules.  相似文献   
8.
We present an new hybrid Diffusion Quantum Monte-Carlo (DQMC)/Local Spin Density Approximation (LSDA) method, to compute the electronic structure of vertical quantum dots (VQD). The exact many-body electronic configuration is computed with a realistic confining potential. Our model confirms the atomic-like model of 2D shell structures obeying Hund's rule already predicted by LSDA.  相似文献   
9.
10.
Isopentenyl diphosphate isomerase (IDI) is a key enzyme in the isoprenoid biosynthetic pathway and is required for all organisms that synthesize isoprenoid metabolites from mevalonate. Type 1 IDI (IDI‐1) is a metalloprotein that is found in eukaryotes, whereas the type 2 isoform (IDI‐2) is a flavoenzyme found in bacteria that is completely absent from human. IDI‐2 from the pathogenic bacterium Streptococcus pneumoniae was recombinantly expressed in Escherichia coli. Steady‐state kinetic studies of the enzyme indicated that FMNH2 (KM =0.3 μM ) bound before isopentenyl diphosphate (KM =40 μM ) in an ordered binding mechanism. An X‐ray crystal structure at 1.4 Å resolution was obtained for the holoenzyme in the closed conformation with a reduced flavin cofactor and two sulfate ions in the active site. These results helped to further approach the enzymatic mechanism of IDI‐2 and, thus, open new possibilities for the rational design of antibacterial compounds against sequence‐similar and structure‐related pathogens such as Enterococcus faecalis or Staphylococcus aureus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号