首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   5篇
化学工业   29篇
轻工业   2篇
无线电   1篇
一般工业技术   1篇
  2021年   3篇
  2020年   3篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   4篇
  2001年   2篇
排序方式: 共有33条查询结果,搜索用时 828 毫秒
1.
Fiber-metal laminates (FMLs) offer the superior characteristics of polymer composites (i.e., light weight, high strength and stiffness) with the ductility and fracture strength of metals. The bond strength between the two dissimilar materials, composite and metal, dictates the properties and performance of the FMLs. The bonding becomes more critical when the polymer matrix is thermoplastic and hydrophobic in nature. This work employed a novel bonding technique between thermoplastic composites and a metal layer using six different combinations of organic coatings. The flexural, and interlaminar shear strength of the thermoplastic fiber metal laminates (TP-FMLs) were examined to investigate the bond strengths in the different cases along with fracture characteristics revealed from the tested samples using scanning electron microscopy. The viscoelastic performance of the fabricated TP-FMLs were also investigated using the dynamic mechanical thermal analysis method.  相似文献   
2.
3.
This article evaluates the role of cellulosic fillers in a synthetic polymer matrix like polymethylmethacrylate (PMMA) when incorporated by in situ suspension polymerization technique. Cellulose micro/nanofibers (CNF) were extracted from jute fibers and chemically modified with maleic anhydride (MACNF) to increase their interfacial compatibility with PMMA by participation of the MA moiety in the free radical polymerization with MMA. The effect of incorporating MACNF on the physical and mechanical properties of the PMMA matrix was investigated. Optical transparency was retained in the in situ prepared PMMA/cellulose composites (IPMC) similar to that of unreinforced PMMA. Another set of PMMA/cellulose composites was prepared by dispersing MACNF in PMMA matrix by ex situ solution dispersion method (EPMC). The modification of CNF with MA significantly improved the filler/matrix interfacial compatibility and in situ polymerization technique further enhanced the properties of the composites. The high moisture absorption tendency, which is a major drawback of the cellulose filled composites, remarkably reduced in IPMC. POLYM. COMPOS., 36:1748–1758, 2015. © 2014 Society of Plastics Engineers  相似文献   
4.
Micro‐ and nano‐scale wear behavior of alumina vis‐á‐vis alumina‐carbon nanotube‐reinforced hybrid composites has been studied. In comparison to the pristine alumina, the alumina‐carbon nanotube hybrid reinforcement resulted in reduced scratch depth and lower frictional coefficient. Addition of carbon nanotube has effectively modified the pristine alumina into a superior wear resistant filler. POLYM. COMPOS., 37:1577–1586, 2016. © 2014 Society of Plastics Engineers  相似文献   
5.
The through-thickness conductivity of carbon fiber reinforced polymer (CFRP) composite was increased by incorporating multiwalled carbon nanotubes in the interlaminar region. Carbon nanotubes (CNTs) were dispersed in a polyethylenimine (PEI) binder, which was then coated onto the carbon fiber fabric. Standard vacuum-assisted resin infusion process was applied to fabricate the composite laminates. This modification technique aims to enhance the electrical conductivity in through-thickness direction for the purpose of nondestructive testing, damage detection, and electromagnetic interference shielding. CNT concentrations ranging from 0 to 0.75 wt% were used and compared to pristine CFRP samples (reference). The through-thickness conductivity of the CFRP exhibited an improvement of up to 781% by adopting this technique. However, the dispersion of CNT in PEI led to a viscosity increase and poor wetting properties which resulted in the formation of voids/defects, poor adhesion (as shown in scanning electron micrographs) and the deterioration of the mechanical properties as manifested by interlaminar shear strength and dynamic mechanical analysis measurements.  相似文献   
6.
7.
Bacterial strain of Rhodococcus sp. (JUBT1) isolated from petrol/diesel station has been used for the desulfurization of different model organo-sulfur compounds like DBT, substituted DBT, etc. which are difficult to remove in the conventional hydro-desulfurization of diesel fraction. The initial concentration of organo-sulfur compounds has been varied in the range of 100–1000 mg/dm3. Under the present experimental range, the bacterial growth has been observed to follow Haldane-type kinetics characterizing the presence of substrate inhibition. The extent of inhibition by the substrate has been observed to increase with the number of substituents in the same range of initial concentration of different organo-sulfur compounds. The values of intrinsic kinetic parameters, like maximum desulfurization rate, vmax, half saturation constant, KS, inhibition constant, KSi and the maximum substrate concentration, CSmax, corresponding to the maximum uninhibited rate of desulfurization, have been determined using each organo-sulfur compound having different number of substituents as limiting substrate. Relative changes in the values of the kinetic parameters have been correlated to the number of substitutions. Separate studies have also been conducted to determine the kinetics of bio-desulfurization of a hydro-treated diesel fraction. The concentration of sulfur in diesel was selected in the range of 100–500 mg/dm3.

The effect of aqueous to non-aqueous ratio on the rate of specific desulfurization of hydro-treated diesel fraction in the range from 1:9 to 9:1 has also been studied in the present investigation. Mathematical models have been developed to predict the conversion of sulfur during batch-type bio-desulfurization of model compounds as well as diesel having known distribution of organo-sulfur compounds. The predictions of the model satisfactorily compare with the experimental results.  相似文献   

8.
Changes occurring in jute fibers when treated with a 5% concentration of a NaOH solution for 0, 2, 4, 6, and 8 h were characterized by weight loss, linear density, tenacity, modulus, FTIR, and X‐ray measurements. A 9.63% weight loss was measured during 2 h of treatment with a drop of hemicellulose content from 22 to 12.90%. The linear density value showed no change until 2 h of treatment followed by a decrease from 33.0 to 14.5 denier by 56% after 6 h of treatment. The tenacity and modulus of the fibers improved by 45 and 79%, respectively, and the percent breaking strain was reduced by 23% after 8 h of treatment. X‐ray diffractograms showed increase in crystallinity of the fibers only after 6 h of treatment, while FTIR measurements showed much of the changes occurring by 2 h of treatment with an increased amount of OH groups. By measuring the rate of change of the modulus, tenacity, and percent breaking strain with the time of treatment, a clear transition was apparent at 4 h of treatment with the dissolution of hemicellulose, causing a weight loss and drop in the linear density before and development of crystallinity with an improvement in the properties after the transition time. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1013–1020, 2001  相似文献   
9.
Journal of Infrared, Millimeter, and Terahertz Waves - Epoxy resin, diglycidyl ether of bisphenol A (DGEBA) and triethylenetetramine (TETA), is known to be hygroscopic in nature, which eventually...  相似文献   
10.
The effectiveness of using interleaved nylon veils to increase the interlaminar toughness of glass fiber reinforced, low‐styrene emission unsaturated polyester resin composites has been investigated. Samples were manufactured by a hand lay‐up technique followed by compression moulding. Nylon 66 veils were used, with the veil content varying from 0% to 4% by weight. Double cantilever beam, short beam shear, and three point bend tests were performed. The increasing levels of nylon veil content improved the interlaminar toughness of the composites, which was characterized by critical strain energy release rate (GIC). The maximum GIC for crack propagation of a nylon interleaved composite increased by almost 170% over the baseline glass fiber reinforced composite. Dynamic Mechanical Analysis revealed an increase in the damping parameter of up to 117%. Image analysis via Digital Image Correlation and Scanning Electron Microscopy revealed increased fiber bridging between adjacent plies as a key reason for these improvements. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41462.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号