首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   466篇
  免费   34篇
  国内免费   1篇
电工技术   3篇
化学工业   149篇
金属工艺   7篇
机械仪表   6篇
建筑科学   37篇
矿业工程   1篇
能源动力   7篇
轻工业   67篇
水利工程   9篇
石油天然气   2篇
无线电   12篇
一般工业技术   81篇
冶金工业   83篇
自动化技术   37篇
  2023年   6篇
  2022年   7篇
  2021年   39篇
  2020年   20篇
  2019年   20篇
  2018年   11篇
  2017年   19篇
  2016年   29篇
  2015年   10篇
  2014年   23篇
  2013年   41篇
  2012年   31篇
  2011年   41篇
  2010年   28篇
  2009年   25篇
  2008年   26篇
  2007年   23篇
  2006年   21篇
  2005年   18篇
  2004年   8篇
  2003年   7篇
  2002年   6篇
  2001年   5篇
  2000年   5篇
  1999年   11篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1974年   1篇
  1940年   1篇
排序方式: 共有501条查询结果,搜索用时 46 毫秒
1.
A systematic, diversity-oriented synthesis approach was employed to access a natural product-inspired flavonoid library with diverse chemical features, including chemical properties, scaffold, stereochemistry, and appendages. Using Cell Painting, the effects of these diversity elements were evaluated, and multiple chemical features that predict biological performance diversity were identified. Scaffold identity appears to be the dominant predictor of performance diversity, but stereochemistry and appendages also contribute to a lesser degree. In addition, the diversity of chemical properties contributed to performance diversity, and the driving chemical property was dependent on the scaffold. These results highlight the importance of key chemical features that may inform the creation of small-molecule, performance-diverse libraries to improve the efficiency and success of high-throughput screening campaigns.  相似文献   
2.
3.
Cachexia is a complication of dismal prognosis, which often represents the last step of several chronic diseases. For this reason, the comprehension of the molecular drivers of such a condition is crucial for the development of management approaches. Importantly, cachexia is a syndrome affecting various organs, which often results in systemic complications. To date, the majority of the research on cachexia has been focused on skeletal muscle, muscle atrophy being a pivotal cause of weight loss and the major feature associated with the steep reduction in quality of life. Nevertheless, defining the impact of cachexia on other organs is essential to properly comprehend the complexity of such a condition and potentially develop novel therapeutic approaches.  相似文献   
4.
Flexible and hydrophobic biobased films were obtained using zein esterified with methanol and para-toluene (p-toluene) sulfonic acid, cutin from tomato peels and ethanol. Esterification was confirmed by proton nuclear magnetic resonance and attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR). Non-modified zein films were brittle and hydrophilic. ATR-FTIR demonstrated that zein esterification increased zein hydrophobicity. Without cutin, esterified zein films were hydrophobic but brittle. Addition of cutin yielded films that were flexible and hydrophobic, as demonstrated by contact angle measurements. Principal component analysis (PCA) of ATR-FTIR data showed that intensities at 3195 cm−1 and 3490 cm−1 were correlated to the relative hydrophobicity of zein films. PCA also showed that films of esterified zein and cutin were more hydrophobic than their counterparts (non-modified zein without cutin). Optical and scanning electron microscopy demonstrated that esterified zein was compatible with cutin and yielded cohesive films, which did not fracture upon bending.  相似文献   
5.
To advance organ-on-a-chip development and other areas befitting from physiologically-relevant biomembranes,a microfluidic platform is presented for synthesis of biomembranes during gelation and investigation into their role as extracellular matrix supports.In this work,high-throughput studies of collagen,chitosan,and collagen-chitosan hybrid biomembranes were carried out to characterize and compare key properties as a function of the applied hydrodynamic conditions during gelation.Specifically,depending on the biopolymer material used,varying flow conditions during biomembrane gelation caused width,uniformity,and swelling ratio to be differently affected and controllable.Finally,cell viability studies of seeded fibroblasts were conducted,thus showing the potential for biological applications.  相似文献   
6.
This study investigated the potential effect of shear rheology and humic acids (HA) on the subsurface transport of polymeric fluids used for the remediation of contaminants. Polymeric fluids were prepared with guar, scleroglucan, and carboxymethyl cellulose (CMC). Guar fluids can be used to suspend reactive particles for contaminant degradation. Fluids prepared with 2.5 g/L of guar in water were viscous, and the crosslinker borax (1 g/L) made them viscoelastic. Microfluidics experiments showed that the increase in elasticity blocked the flow of guar in 350 μm channels. Guar, CMC, or scleroglucan fluids containing sodium thiosulfate can be used to trap toxic Cr(VI) in the subsurface and reduce it to harmless Cr(III). Trapping of Cr(VI) is achieved by the gelation of the fluids upon contact with chromium. Before mixing with chromium, HA did not affect the flow of CMC, guar, and scleroglucan in microfluidic channels. Quartz-crystal microbalance with dissipation monitoring experiments indicates that HA reduced sorption of guar onto silica, potentially promoting the transport of guar fluids in sandy aquifers. While HA slightly decreased the rate of gelation of CMC and scleroglucan upon contact with chromium, it did not affect the fast gelation rate of guar. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48465.  相似文献   
7.
Vivianite, a blue pigment employed in the past practically only in Northern and Central Europe, but with very limited use, was identified in an early sixteenth century painting, stylistically with Flemish features, from a church in Portugal. The identification of this iron phosphate mineral was made by SEM‐EDS based on the atomic ratio between phosphorus and iron in layers of blue paint (area analysis) and in particles of these same layers (spot analysis). This painting, about which there is no document to prove its authorship, becomes the first case, known in detail, of a sixteenth century painting containing vivianite. Moreover, this find and the presence of a chalk ground, also identified, strongly support the hypothesis of being a Flemish painting.  相似文献   
8.
9.
Liquid marbles may be traditionally formed by rolling a droplet on a bed of non-wetting particles resulting in encapsulation and stabilisation. Particles used in this process may range from nanometre to millimetre if handled with sufficient care. This method, however, runs the risk of droplet coalescence and is limited to non-wetting particles. Currently there exist some alternative methods of formulation including using electrostatics to either deliver a particle bed to the droplet or pull the droplet to the particles. The former has shown some promise in potential batch processes but is hindered by interparticle forces. Additional production methods include a form of blender, but this has shown to be unable to produce marbles of a narrow size distribution. Once formed, liquid marbles have demonstrated value as potential blood typing devices, as micro-reaction vessels due to the inherent barrier between the internal phase and the substrate whilst maintaining gas permeability, and as contaminant sensors. Liquid marbles also demonstrate a remarkable level of elasticity under compressive force and reduced evaporation rates when compared to bare water droplets, a function of the size and composition of the stabilising particles. In addition to this, liquid marbles have been proposed as actuators. Locomotion may easily be induced in these structures, using electrostatics, sound, magnetism or light depending on the particle/liquid combinations used in formation, and the environment of deployment. This review seeks to present and summarise recent advances in the field of liquid marble manufacture and methods for actuation. We also aim to highlight potential future avenues of further study within this arena.  相似文献   
10.
Iron nanoparticles are becoming increasingly popular for the treatment of contaminated soil and groundwater; however, their mobility and reactivity in subsurface environments are significantly affected by their tendency to aggregate. Assessing their stability under environmental conditions is crucial for determining their environmental fate. A multi-method approach (including different size-measurement techniques and the DLVO theory) was used to thoroughly characterise the behaviour of iron oxide nanoparticles (Fe2O3NPs) under environmentally relevant conditions. Although recent studies have demonstrated the importance of using a multi-method approach when characterising nanoparticles, the majority of current studies continue to use a single-method approach.Under some soil conditions (i.e. pH 7, 10 mM NaCl and 2 mM CaCl2) and increasing particle concentration, Fe2O3NPs underwent extensive aggregation to form large aggregates (>1 μm). Coating the nanoparticles with dissolved organic matter (DOM) was investigated as an alternative “green” solution to overcoming the aggregation issue instead of using the more commonly proposed polyelectrolytes. At high concentrations, DOM effectively covered the surface of the Fe2O3NPs, thereby conferring negative surface charge on the particles across a wide range of pH values. This provided electrostatic stabilisation and considerably reduced the particle aggregation effect. DOM-coated Fe2O3NPs also proved to be more stable under high ionic strength conditions. The presence of CaCl2, however, even at low concentrations, induced the aggregation of DOM-coated Fe2O3NPs, mainly via charge neutralisation and bridging. This has significant implications in regards to the reactivity and fate of these materials in the environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号