首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
化学工业   6篇
轻工业   2篇
一般工业技术   5篇
  2021年   3篇
  2020年   1篇
  2018年   2篇
  2013年   1篇
  2011年   3篇
  2008年   1篇
  2006年   1篇
  1994年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Catalysis Letters - We converted agro-waste Custard Apple Peels (CAP) to ash via thermal treatment, on which Pd(OAc)2 was immobilized easily that produced a low-cost, highly efficient Pd/CAP-ash...  相似文献   
2.
The applications and benefits of nanotechnology in the agricultural sector have attracted considerable attention, particularly in the invention of unique nanopesticides and nanofertilisers. The contemporary developments in nanotechnology are acknowledged and the most significant opportunities awaiting the agriculture sector from the recent scientific and technical literature are addressed. This review discusses the significance of recent trends in nanomaterial‐based sensors available for the sustainable management of agricultural soil, as well as the role of nanotechnology in detection and protection against plant pathogens, and for food quality and safety. Novel nanosensors have been reported for primary applications in improving crop practices, food quality, and packaging methods, thus will change the agricultural sector for potentially better and healthier food products. Nanotechnology is well‐known to play a significant role in the effective management of phytopathogens, nutrient utilisation, controlled release of pesticides, and fertilisers. Research and scientific gaps to be overcome and fundamental questions have been addressed to fuel active development and application of nanotechnology. Together, nanoscience, nanoengineering, and nanotechnology offer a plethora of opportunities, proving a viable alternative in the agriculture and food processing sector, by providing a novel and advanced solutions. © 2017 Society of Chemical Industry  相似文献   
3.
The increasing use of nanotechnology requires the clarification of the behavior and the effects of nanoparticles (NPs) as they are released into the environment. This study was to investigate the phytotoxicity of cobalt and zinc oxide NPs using the roots of Allium cepa (onion bulbs) as an indicator organism. The effects of cobalt and zinc oxide NPs on the root elongation, root morphology, and cell morphology of a plant, as well as their adsorption potential, were determined through the hydroponic culturing of A. cepa. A. cepa roots were treated with dispersions of the cobalt and zinc oxide NPs having three different concentrations (5, 10, and 20 μg ml(-1)). With increasing concentrations of the NPs, the elongation of the roots was severely inhibited by both the cobalt and the zinc oxide NPs as compared to that in the control plant (untreated A. cepa roots). Massive adsorption of cobalt oxide NPs into the root system was responsible for the phytotoxicity. Zinc oxide NPs caused damage because of their severe accumulation in both the cellular and the chromosomal modules, thus signifying their highly hazardous phytotoxic nature.  相似文献   
4.
PIN-FORMED (PIN) genes play a crucial role in regulating polar auxin distribution in diverse developmental processes, including tropic responses, embryogenesis, tissue differentiation, and organogenesis. However, the role of PIN-mediated auxin transport in various plant species is poorly understood. Currently, no information is available about this gene family in wheat (Triticum aestivum L.). In the present investigation, we identified the PIN gene family in wheat to understand the evolution of PIN-mediated auxin transport and its role in various developmental processes and under different biotic and abiotic stress conditions. In this study, we performed genome-wide analysis of the PIN gene family in common wheat and identified 44 TaPIN genes through a homology search, further characterizing them to understand their structure, function, and distribution across various tissues. Phylogenetic analyses led to the classification of TaPIN genes into seven different groups, providing evidence of an evolutionary relationship with Arabidopsis thaliana and Oryza sativa. A gene exon/intron structure analysis showed a distinct evolutionary path and predicted the possible gene duplication events. Further, the physical and biochemical properties, conserved motifs, chromosomal, subcellular localization, transmembrane domains, and three-dimensional (3D) structure were also examined using various computational approaches. Cis-elements analysis of TaPIN genes showed that TaPIN promoters consist of phytohormone, plant growth and development, and stress-related cis-elements. In addition, expression profile analysis also revealed that the expression patterns of the TaPIN genes were different in different tissues and developmental stages. Several members of the TaPIN family were induced during biotic and abiotic stress. Moreover, the expression patterns of TaPIN genes were verified by qRT-PCR. The qRT-PCR results also show a similar expression with slight variation. Therefore, the outcome of this study provides basic genomic information on the expression of the TaPIN gene family and will pave the way for dissecting the precise role of TaPINs in plant developmental processes and different stress conditions.  相似文献   
5.
Soil samples collected from the vicinity of "Manpasand textile industry", located near Ichalkaranji, India were studied for screening and isolation of bacterial strains capable of degradation of textile dyes. A potential strain was selected on the basis of rapid dye degradation and later identified as Comamonas sp. UVS. Comamonas sp. UVS showed 100% decolorization of Direct Red 5B (DR5B) dye at 40 degrees C and pH 6.5. The maximum Direct Red 5B concentration decolorized was 1100mg/l in nutrient broth within 125h. A numerical simulation with the Michaelis-Menten kinetics model gives an optimal value of 16.01+/-0.36mgdye/gcell/h for maximum rate (V(max)) and 7.97+/-0.21mg/l for the Michaelis constant (K(m)). The induction in the activities of laccase and LiP was observed during decolorization. These enzymes were inhibited by the addition of sodium azide. The biodegradation was monitored by UV-vis, FTIR spectroscopy and HPLC. The GCMS analysis indicated the presence of 7-benzoylamino-3-diazenyl-4-hydroxy-naphthalene-2-sulfonic acid in degraded product of the dye. The germination of Triticum aestivum seeds was inhibited with DR5B treatment but not with the treatment of dye degradation products.  相似文献   
6.
Mathematical Modeling of Withering Characteristics of Tea Leaves   总被引:1,自引:0,他引:1  
The withering characteristics of tea leaves were examined for different temperatures. Tea leaves were withered at a temperature range of 20-45°C with a constant air velocity of 1.1 m/s. The experimental results illustrated the absence of constant-rate drying period and withering took place only in the falling-rate period. During the falling-rate period, at constant drying air flow rate, the drying rate increased and drying time decreased with the increase in drying air temperature. Drying models of Henderson and Pabis and Page were evaluated based on mean bias error (EMB), root mean square error (ERMS), correlation coefficient (R2), and the chi square (χ2). The Henderson and Pabis model was found to be a better model for describing the withering characteristics of tea leaves for each of the temperatures of 20, 25, 30, and 35°C. The values obtained from Page model were found to be more reasonable for temperatures of 40 and 45°C than the other model. Both the models closely fitted the withering data within a certain range of temperature. The Henderson and Pabis model gave better prediction and satisfactorily described the withering characteristics of tea leaves at temperatures lower than 40°C whereas the Page model fitted well at temperatures greater than 40°C.  相似文献   
7.
XRD and microstructure studies were carried out on Ti4+ and Zr4+-substituted Li-Zn ferrites prepared by standard ceramic technique. All the ferrite compositions exhibit single phase formation. The lattice parametera increases linearly with the content of Zn2+Zr4+ and Zn2+Ti4+, which is attributed to the ionic volumes of the cations involved. With substitution by Zr4+ the average size decreases, while with substitution by Ti4+ the grain size increases. In both the series grain size varies with the composition. Excess substitution of Zr4+ (x>0·4) leads to the formation of secondary images and discontinuous grain growth. Both Zr4+ and Ti4+ compositions obey Kurtz theory.  相似文献   
8.

The withering characteristics of tea leaves were examined for different temperatures. Tea leaves were withered at a temperature range of 20–45°C with a constant air velocity of 1.1 m/s. The experimental results illustrated the absence of constant-rate drying period and withering took place only in the falling-rate period. During the falling-rate period, at constant drying air flow rate, the drying rate increased and drying time decreased with the increase in drying air temperature. Drying models of Henderson and Pabis and Page were evaluated based on mean bias error (EMB), root mean square error (ERMS), correlation coefficient (R2), and the chi square (χ2). The Henderson and Pabis model was found to be a better model for describing the withering characteristics of tea leaves for each of the temperatures of 20, 25, 30, and 35°C. The values obtained from Page model were found to be more reasonable for temperatures of 40 and 45°C than the other model. Both the models closely fitted the withering data within a certain range of temperature. The Henderson and Pabis model gave better prediction and satisfactorily described the withering characteristics of tea leaves at temperatures lower than 40°C whereas the Page model fitted well at temperatures greater than 40°C.  相似文献   
9.
In this work, we employed a simple and cost-effective chemical route to obtain a highly stable and efficient quaternary mesoporous 3D nanoflower-like NiCuCo2S4 nanocomposite for supercapacitor applications. The NiCuCo2S4 composite exhibited a mixture of NiCo2S4 and CuCo2S4 phases, confirming the formation a quaternary NiCuCo2S4 thin film. A surface morphological analysis revealed the unique nanoflower-like nanostructure of the annealed composite. The electrochemical analysis of the NiCuCo2S4 electrode demonstrated a high specific capacity (Cs) of 414 mAh g?1 at a lower scan rate of 10 mV s?1 and a superior cycling stability up to 3000 cycles. A solid-state hybrid supercapacitor (SHS) was also constructed by the NiCuCo2S4 and AC powder as positive and negative electrodes, respectively. The NiCuCo2S4//AC hybrid cell produced a high Cs, energy density, and power density of 159 F g?1, 35.19 Wh kg?1, and 0.66 kW kg?1, respectively at a current density of 10 mA with good cycling stability. The results demonstrated that the fabrication process is effective for the development of a novel quaternary transition metal sulfide (TMS) electrode.  相似文献   
10.
Biosynthesis of gold nanoparticles and nanoplates (GNPs) was accomplished using aqueous fractions of pear extract as a safe, reducing, particle-stabilizing, and shape-directing agent. The maximum yields of spherical gold nanoparticles having the average sizes of 40, 20, and 10 nm were achieved at 30, 60, and 90 °C, respectively, at a pear extract concentration of 45% (v/v). The maximum yield of gold nanoplates was obtained with sizes ranging from 20 to 400 nm, particularly at reaction temperatures of 30, 60, and 90 °C, at a pear extract concentration of 5% (v/v). The surface chemistry analysis of the GNPs suggests that the sugars and peptides or proteins as key biomolecules of the pear extract play a crucial role in the reduction of Au(III), subsequently resulting in healthy capping. Therefore, this environmentally friendly synthesis method of GNPs for the particular type of morphologies is expected to be a competitive alternative to existing physical and chemical methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号