首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5099篇
  免费   507篇
  国内免费   14篇
电工技术   64篇
综合类   5篇
化学工业   1164篇
金属工艺   238篇
机械仪表   365篇
建筑科学   80篇
矿业工程   4篇
能源动力   272篇
轻工业   435篇
水利工程   9篇
石油天然气   12篇
无线电   977篇
一般工业技术   1175篇
冶金工业   219篇
原子能技术   69篇
自动化技术   532篇
  2023年   78篇
  2022年   48篇
  2021年   178篇
  2020年   128篇
  2019年   177篇
  2018年   186篇
  2017年   202篇
  2016年   249篇
  2015年   173篇
  2014年   251篇
  2013年   318篇
  2012年   410篇
  2011年   491篇
  2010年   322篇
  2009年   294篇
  2008年   266篇
  2007年   223篇
  2006年   199篇
  2005年   149篇
  2004年   166篇
  2003年   164篇
  2002年   148篇
  2001年   102篇
  2000年   92篇
  1999年   82篇
  1998年   71篇
  1997年   71篇
  1996年   58篇
  1995年   62篇
  1994年   29篇
  1993年   34篇
  1992年   24篇
  1991年   18篇
  1990年   8篇
  1989年   15篇
  1988年   13篇
  1987年   18篇
  1986年   15篇
  1985年   15篇
  1984年   14篇
  1983年   7篇
  1982年   7篇
  1981年   6篇
  1980年   9篇
  1979年   4篇
  1978年   3篇
  1977年   6篇
  1976年   9篇
  1975年   2篇
  1967年   2篇
排序方式: 共有5620条查询结果,搜索用时 15 毫秒
1.
With the rapid growth of wireless communication devices, the influences of electromagnetic fields (EMF) on human health are gathering increasing attention. Since the skin is the largest organ of the body and is located at the outermost layer, it is considered a major target for the health effects of EMF. Skin pigmentation represents one of the most frequent symptoms caused by various non-ionizing radiations, including ultraviolet radiation, blue light, infrared, and extremely low frequency (ELF). Here, we investigated the effects of EMFs with long-term evolution (LTE, 1.762 GHz) and 5G (28 GHz) bandwidth on skin pigmentation in vitro. Murine and Human melanoma cells (B16F10 and MNT-1) were exposed to either LTE or 5G for 4 h per day, which is considered the upper bound of average smartphone use time. It was shown that neither LTE nor 5G exposure induced significant effects on cell viability or pigmentation. The dendrites of MNT-1 were neither lengthened nor regressed after EMF exposure. Skin pigmentation effects of EMFs were further examined in the human keratinocyte cell line (MNT-1-HaCaT) co-culture system, which confirmed the absence of significant hyper-pigmentation effects of LTE and 5G EMFs. Lastly, MelanoDerm™, a 3D pigmented human epidermis model, was irradiated with LTE (1.762 GHz) or 5G (28 GHz), and image analysis and special staining were performed. No changes in the brightness of MelanoDerm™ tissues were observed in LTE- or 5G-exposed tissues, except for only minimal changes in the size of melanocytes. Collectively, these results imply that exposure to LTE and 5G EMFs may not affect melanin synthesis or skin pigmentation under normal smartphone use condition.  相似文献   
2.
The positive effects of a lithiophilic substrate on the electrochemical performance of lithium metal anodes are confirmed in several reports, while the understanding of lithiophilic substrate-guided lithium metal nucleation and growth behavior is still insufficient. In this study, the effect of a lithiophilic surface on lithium metal nucleation and growth behaviors is investigated using a large-area Ti3C2Tx MXene substrate with a large number of oxygen and fluorine dual heteroatoms. The use of the MXene substrate results in a high lithium-ion concentration as well as the formation of uniform solid–electrolyte-interface (SEI) layers on the lithiophilic surface. The solid–solid interface (MXene-SEI layer) significantly affects the surface tension of the deposited lithium metal nuclei as well as the nucleation overpotential, resulting in the formation of uniformly dispersed lithium nanoparticles ( ≈ 10–20 nm in diameter) over the entire MXene surface. The primary lithium nanoparticles preferentially coalesce and agglomerate into larger secondary particles while retaining their primary particle shapes. Subsequently, they form close-packed structures, resulting in a dense metal layer composed of particle-by-particle microstructures. This distinctive lithium metal deposition behavior leads to highly reversible cycling performance with high Columbic efficiencies >  99.0% and long cycle lives of over 1000 cycles.  相似文献   
3.
The esophagus is a tubular-shaped muscular organ where swallowed fluids and muscular contractions constitute a highly dynamic environment. The turbulent, coordinated processes that occur through the oropharyngeal conduit can often compromise targeted administration of therapeutic drugs to a lesion, significantly reducing therapeutic efficacy. Here, magnetically guidable drug vehicles capable of strongly adhering to target sites using a bioengineered mussel adhesive protein (MAP) to achieve localized delivery of therapeutic drugs against the hydrodynamic physiological conditions are proposed. A suite of highly uniform microparticles embedded with iron oxide (IO) nanoparticles (MAP@IO MPs) is microfluidically fabricated using the genipin-mediated covalent cross-linking of bioengineered MAP. The MAP@IO MPs are successfully targeted to a specific region and prolongedly retained in the tubular-structured passageway. In particular, orally administered MAP@IO MPs are effectively captured in the esophagus in vivo in a magnetically guidable manner. Moreover, doxorubicin (DOX)-loaded MAP@IO MPs exhibit a sustainable DOX release profile, effective anticancer therapeutic activity, and excellent biocompatibility. Thus, the magnetically guidable locomotion and robust underwater adhesive properties of the proteinaceous soft microbots can provide an intelligent modular approach for targeted locoregional therapeutics delivery to a specific lesion site in dynamic fluid-associated tubular organs such as the esophagus.  相似文献   
4.
Metals and Materials International - This study investigated the influence of the initial grain size on the plastic deformation and tunnel defects that occurred from friction stir welding of...  相似文献   
5.
This work demonstrates a means of automatic transformation from planar electronic devices to desirable 3D forms. The method uses a spatially designed thermoplastic framework created via extrusion shear printing of acrylonitrile–butadiene–styrene (ABS) on a stress‐free ABS film, which can be laminated to a membrane‐type electronic device layer. Thermal annealing above the glass transition temperature allows stress relaxation in the printed polymer chains, resulting in an overall shape transformation of the framework. In addition, the significant reduction in the Young's modulus and the ability of the polymer chains to reflow in the rubbery state release the stress concentration in the electronic device layer, which can be positioned outside the neutral mechanical plane. Electrical analyses and mechanical simulations of a membrane‐type Au electrode and indium gallium zinc oxide transistor arrays before and after transformation confirm the versatility of this method for developing 3D electronic devices based on planar forms.  相似文献   
6.
Journal of Mechanical Science and Technology - Presently, countries are trying to increase their energy efficiency. Therefore, the operating temperatures of very high temperature reactor (VHTR) and...  相似文献   
7.
8.
The Journal of Supercomputing - Reuse is the activity of developing new software systems using software components (or artifacts) that are already proven and reliable. However, traditional...  相似文献   
9.
Obesity has become a pandemic that threatens the quality of life and discovering novel therapeutic agents that can reverse obesity and obesity-related metabolic disorders are necessary. Here, we aimed to identify new anti-obesity agents using a phenotype-based approach. We performed image-based high-content screening with a fluorogenic bioprobe (SF44), which visualizes cellular lipid droplets (LDs), to identify initial hit compounds. A structure-activity relationship study led us to yield a bioactive compound SB1501, which reduces cellular LDs in 3T3-L1 adipocytes without cytotoxicity. SB1501 induced the expression of gene products that regulate mitochondrial biogenesis and fatty acid oxidation in 3T3-L1 adipocytes. Daily treatment with SB1501 improved the metabolic states of db/db mice by reducing body fat mass, adipose tissue mass, food intake, and increasing glucose tolerance. The anti-obesity effect of SB1501 may result from perturbation of the PGC-1α–UCP1 regulatory axis in inguinal white adipose tissue and brown adipose tissue. These data suggest the therapeutic potential of SB1501 as an anti-obesity agent via modulating mitochondrial activities.  相似文献   
10.
Composite anodes of nano-sized Ni and Ba(Zr0.85Y0.15)O3-δ (BZY) were fabricated by infiltrating a single precursor solution of BZY and Ni into the BZY scaffold, and decreasing the calcination temperature to 1173 K. This decrease in the fabrication temperature of the Ni-cermet anode prevents the chemical reaction between the electrolyte and nickel, thus preventing a reduction in the conductivity of the electrolyte. By optimizing the amount of Ni in the Ni-cermet and infiltrating additional catalysts such as CeO2 and Pd, the non-ohmic ASR of the Ni-cermet anode could be optimized. This resulted in a smaller non-ohmic ASR of anode than one that was fabricated by the conventional co-sintering method. Consequently, a high power density of 790 mW/cm2 at 973 K can be obtained from electrolyte-supported cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号