首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88783篇
  免费   1200篇
  国内免费   410篇
电工技术   821篇
综合类   2320篇
化学工业   12352篇
金属工艺   4942篇
机械仪表   3112篇
建筑科学   2327篇
矿业工程   589篇
能源动力   1218篇
轻工业   4084篇
水利工程   1336篇
石油天然气   354篇
无线电   9598篇
一般工业技术   17191篇
冶金工业   3971篇
原子能技术   300篇
自动化技术   25878篇
  2021年   87篇
  2020年   64篇
  2019年   106篇
  2018年   14519篇
  2017年   13444篇
  2016年   10065篇
  2015年   682篇
  2014年   344篇
  2013年   494篇
  2012年   3351篇
  2011年   9697篇
  2010年   8499篇
  2009年   5763篇
  2008年   7059篇
  2007年   8053篇
  2006年   358篇
  2005年   1401篇
  2004年   1284篇
  2003年   1304篇
  2002年   663篇
  2001年   195篇
  2000年   268篇
  1999年   145篇
  1998年   227篇
  1997年   154篇
  1996年   142篇
  1995年   108篇
  1994年   94篇
  1993年   96篇
  1992年   106篇
  1991年   67篇
  1990年   60篇
  1989年   68篇
  1988年   75篇
  1987年   54篇
  1986年   49篇
  1985年   51篇
  1984年   58篇
  1983年   50篇
  1982年   56篇
  1981年   53篇
  1980年   43篇
  1976年   49篇
  1968年   49篇
  1966年   45篇
  1965年   48篇
  1958年   40篇
  1957年   37篇
  1955年   66篇
  1954年   69篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Zirconolite-rich full ceramic wasteforms designed to immobilize Pu-bearing wastes were produced via hot isostatic pressing (HIP) using stainless steel (SS) and nickel (Ni) HIP canisters. A detailed profiling of the elemental compositions of the major and minor phases over the canister–wasteform interaction zone was performed using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDS) characterization. Bulk sample analyses from regions near the center of the HIP canister were also conducted for both samples using X-ray diffraction and SEM-EDS. The sample with the Ni HIP canister showed almost no interaction zone with only minor diffusion of Ni from the inner wall of the canister into the near-surface region of the wasteform. The sample with the SS HIP canister showed ∼100–120 μm of interaction zone dominated by high-temperature Cr diffusion from canister materials to the wasteform with the Cr predominantly incorporated into the durable zirconolite phase. We also examined, for the first time, changes to the HIP canister wall thickness caused by HIPing and demonstrated that no canister wall thinning occurred. Instead, in the areas examined, the canister wall thickness was observed to increase (up to ∼20%) due to the compression occurring during the HIP cycle. Further, only sparse formation of (Cr, Mn)-rich oxide particles were noted within the HIP canister inner wall area immediately adjacent to the ceramic material, with no evidence for reverse diffusion of ceramic materials. Though the HIP canister–wasteform interaction extends to ∼120 μm when using an SS HIP canister for the system investigated, this translates to <<1 vol.% for an industrial scale HIPed wasteform. Importantly, the HIP canister–wasteform interactions did not produce any obviously less durable phases in the wasteform or had any detrimental impact on the HIP canister properties.  相似文献   
2.
The noninvasive sampling of dermal interstitial fluid (ISF) for the monitoring of clinical biomarkers is a greatly appealing area of research. The identification of molecular biomarkers in biological fluids has been accelerated with -omics analyses but remains limited in ISF because of its time-consuming and complex extraction process. Here, the generation of microneedle (MN) patches made of superabsorbent acrylate-based hydrogels for the rapid sampling of dermal ISF is described to explore its proteome. In depth, iterative optimization allows the identification of novel acrylate-based compositions with the required chemical, mechanical, and biocompatibility properties allowing proteomic analysis of the extracted ISF for the first time after sampling with swelling MNs. The generated MN arrays show no cytotoxic effect, successfully cross the stratum corneum, and can collect up to 6 µL of dermal ISF in 10 min in vivo. Proteomics lead to the detection of 176 clinically relevant biomarkers in the collected samples validating the use of ISF as a relevant bodily fluid for disease monitoring and diagnostic. Importantly, it is discovered that extraction fingerprint is strongly dependent on the MNs chemistry, and thus specific biomarkers could be selectively extracted by tuning the composition of the patch, making the system versatile and specific.  相似文献   
3.
Dense high-entropy (Hf,Zr,Ti,Ta,Nb)B2 ceramics with Nb contents ranging from 0 to 20 at% were produced by a two-step spark plasma sintering process. X-ray diffraction indicated that a single-phase with hexagonal structure was detected in the composition without Nb. In contrast, two phases with the same hexagonal structure, but slightly different lattice parameters were present in compositions containing Nb. The addition of Nb resulted in the presence of a Nb-rich second phase and the amount of the second phase increased as the Nb content increased. The relative densities were all >99.5 %, but decreased from ~100 % to ~99.5 % as the Nb content increased from 0 to 20 at%. The average grain size decreased from 13.9 ± 5.5 μm for the composition without Nb additions to 5.2 ± 2.0 μm for the composition containing 20 at% Nb. The reduction of grain size with increasing Nb content was due to the suppression of grain growth by the Nb-rich second phase. The addition of Nb increased Young’s modulus and Vickers hardness, but decreased shear modulus. While some Nb dissolved into the main phase, a Nb-rich second phase was formed in all Nb-containing compositions.  相似文献   
4.
Although X-ray absorption spectroscopy (XAS) was conceived in the early 20th century, it took 60 years after the advent of synchrotrons for researchers to exploit its tremendous potential. Counterintuitively, researchers are now developing bench type polychromatic X-ray sources that are less brilliant to measure catalyst stability and work with toxic substances. XAS measures the absorption spectra of electrons that X-rays eject from the tightly bound core electrons to the continuum. The spectrum from 10 to 150 eV (kinetic energy of the photoelectrons) above the chemical potential—binding energy of core electrons—identifies oxidation state and band occupancy (X-ray absorption near edge structure, XANES), while higher energies in the spectrum relate to local atomic structure like coordination number and distance, Debye-Waller factor, and inner potential correction (extended X-ray absorption fine structure, EXAFS). Combining XAS with complementary spectroscopic techniques like Raman, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) elucidates the nature of the chemical bonds at the catalyst surface to better understand reaction mechanisms and intermediates. Because synchrotrons continue to be the light source of choice for most researchers, the number of articles Web of Science indexes per year has grown from 1000 in 1991 to 1700 in 2020. Material scientists and physical chemists publish an order of magnitude articles more than chemical engineers. Based on a bibliometric analysis, the research comprises five clusters centred around: electronic and optical properties, oxidation and hydrogenation catalysis, complementary analytical techniques like FTIR, nanoparticles and electrocatalysis, and iron, metals, and complexes.  相似文献   
5.
Among a variety of solar cell types, thin-film solar cells have been rigorously investigated as cost-effective and efficient solar cells. In many cases, flexible solar cells are also fabricated as thin films and undergo frequent stress due to the rolling and bending modes of applications. These frequent motions result in crack initiation and propagation (including delamination) in the thin-film solar cells, which cause degradation in efficiency. Reliability evaluation of solar cells is essential for developing a new type of solar cell. In this paper, we investigated the effect of layer delamination and grain boundary crack on 3D thin-film solar cells. We used finite element method simulation for modeling of both electrical performance and cracked structure of 3D solar cells. Through simulations, we quantitatively calculated the effect of delamination length on 3D copper indium gallium diselenide (CIGS) solar cell performance. Moreover, it was confirmed that the grain boundary of CIGS could improve the solar cell performance and that grain boundary cracks could decrease cell performance by altering the open circuit voltage. In this paper, the investigated material is a CIGS solar cell, but our method can be applied to general polycrystalline solar cells.  相似文献   
6.
Benchmarking is a tool available to furnace operators to evaluate their tap-hole life-cycle management practices against those of their peers. It allows furnace operators to challenge their own practices in order to increase furnace utilization. To facilitate the benchmarking process, it is necessary to define the variables to be considered and how they relate to one another. This article develops, from the literature and industry interviews, a holistic conceptualization of the variables that form part of tap-hole lifecycle management and performance. Specifically, the article focuses on the variables related to coke-bed-based processes (FeCr, SiMn, and HCFeMn) applying SAF technology of circular design.  相似文献   
7.
Antimony and bismuth recovery from copper electrorefining electrolyte could reduce the impacts of these problem elements and produce a new primary source for them. Two proprietary phosphonic acid ester extractants were examined (REX-1 and REX-2) for the removal of antimony and bismuth from copper electrorefining electrolytes. Experimentation included shakeout and break tests to determine the basic parameters for the extractants in terms of maximum loading, break times, and extraction and stripping efficiency. Five permutations of extractant mixtures (100 wt.% REX-1 and 25 wt.%, 50 wt.%, 75 wt.% and 100 wt.% REX-2) were studied. It was determined that REX-2 was able to extract Sb and Bi from the electrolyte, but required some mixture with REX-1 to better facilitate stripping with 400 g/L sulfuric acid. The laboratory electrorefining electrolyte containing glue had faster disengagement times than a synthetic solution without glue.  相似文献   
8.
Thermal barrier coatings (TBCs) are used to protect the hot sections of gas turbine engines and airplane engines. A TBC system comprises a substrate, bond coat, and TBC topcoat. The development of an accurate method for determining the Young’s modulus and Poisson’s ratio of TBC using a multilayered specimen is of importance. In this study, we applied the bending theory of a laminated plate to a three-layered material and proposed models to determine the Young’s modulus and Poisson’s ratio of the TBC layer using the bending strain of the TBC system specimen. Three methods were developed by utilizing (i) the coating biaxial strain, (ii) substrate biaxial strain, or (iii) coating and substrate biaxial strains. Subsequently, we determined appropriate dimensions of the specimen and span by using three-dimensional finite element analysis, and numerically verified the usefulness of the three proposed methods. However, the Young’s modulus and Poisson’s ratio determined using the multilayered specimen with a substrate are sensitive to experimental errors. Therefore, we evaluated the sensitivity of the three proposed methods to experimental error, and we determined the most insensitive method among them. Finally, we experimentally demonstrated the usefulness of this method.  相似文献   
9.
Triangulation of the Ag-Hg-Se-I system in the vicinity of quaternary phase Ag4HgSe2I2 was performed by differential thermal analysis, X-ray diffraction and electromotive force (EMF) methods. The spatial position of the phase region Ag4HgSe2I2-Se-HgI2 regarding the figurative point of silver was used to write the chemical reaction of formation of Ag4HgSe2I2. The EMF measurements were carried out by applying an electrochemical cell: (–) C|Ag|Ag2GeS3 glass|Ag4HgSe2I2, HgI2, Se|C (+), where C is graphite and Ag2GeS3 glass is the fast purely Ag+ ions conducting electrolyte. The linear dependence of the EMF of the electrochemical cell on temperature was used to determine the standard thermodynamic values of Ag4HgSe2I2 for the first time.  相似文献   
10.
Some alloying elements (Al, Er, Gd, Li, Mn, Sn, Y, Zn) were proved recently by calculations or experiments to improve the formability of Mg alloys, but ignoring their site preference in Mg crystals during the calculated process. A crystallographic model was built via first principle calculations to predict the site preferences of these elements. Regularities between doping elements and site preferences were summarized. Meanwhile, in the basis of the crystallographic model, a series of formulas were deduced combining the diffraction law. It predicted that a crystal plane with abnormal XRD peak intensity of the Mg-based solid solutions, compared to that of the pure Mg, prefers to possess solute atoms. Thus, three single-phase solid solution alloys were then prepared through an original In-situ Solution Treatment, and their XRD patterns were compared. Finally, the experiment further described the site preferences of these solute atoms in Mg crystal, verifying the calculation results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号