首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1623篇
  免费   70篇
电工技术   16篇
综合类   3篇
化学工业   493篇
金属工艺   26篇
机械仪表   26篇
建筑科学   136篇
矿业工程   4篇
能源动力   40篇
轻工业   195篇
水利工程   5篇
石油天然气   1篇
无线电   96篇
一般工业技术   323篇
冶金工业   214篇
原子能技术   15篇
自动化技术   100篇
  2021年   20篇
  2019年   22篇
  2018年   25篇
  2017年   33篇
  2016年   36篇
  2015年   39篇
  2014年   43篇
  2013年   68篇
  2012年   64篇
  2011年   80篇
  2010年   45篇
  2009年   60篇
  2008年   66篇
  2007年   55篇
  2006年   50篇
  2005年   48篇
  2004年   53篇
  2003年   34篇
  2002年   35篇
  2001年   18篇
  1998年   22篇
  1997年   28篇
  1996年   31篇
  1995年   25篇
  1994年   21篇
  1993年   30篇
  1992年   18篇
  1991年   28篇
  1990年   20篇
  1989年   25篇
  1988年   15篇
  1987年   14篇
  1986年   14篇
  1985年   33篇
  1984年   35篇
  1983年   28篇
  1982年   26篇
  1981年   30篇
  1980年   27篇
  1979年   19篇
  1978年   28篇
  1976年   17篇
  1975年   15篇
  1974年   30篇
  1973年   19篇
  1972年   17篇
  1971年   14篇
  1970年   15篇
  1969年   16篇
  1968年   14篇
排序方式: 共有1693条查询结果,搜索用时 15 毫秒
1.
Tissue engineering requires the precise positioning of mammalian cells and biomaterials on substrate surfaces or in preprocessed scaffolds. Although the development of 2D and 3D bioprinting technologies has made substantial progress in recent years, precise, cell-friendly, easy to use, and fast technologies for selecting and positioning mammalian cells with single cell precision are still in need. A new laser-based bioprinting approach is therefore presented, which allows the selection of individual cells from complex cell mixtures based on morphology or fluorescence and their transfer onto a 2D target substrate or a preprocessed 3D scaffold with single cell precision and high cell viability (93–99% cell survival, depending on cell type and substrate). In addition to precise cell positioning, this approach can also be used for the generation of 3D structures by transferring and depositing multiple hydrogel droplets. By further automating and combining this approach with other 3D printing technologies, such as two-photon stereolithography, it has a high potential of becoming a fast and versatile technology for the 2D and 3D bioprinting of mammalian cells with single cell resolution.  相似文献   
2.
This publication is focused on the structural origin of viscoelasticity in Langmuir monolayers. To improve the understanding of the structural origin of viscoelasticity of surfactant films, we systematically studied interfacial films of different sorbitan esters with saturated (Span 60 and 65) and unsaturated (Span 80 and 85) paraffin chains by means of surface rheology, Langmuir isotherms, X-ray reflectometry (XRR), and Brewster angle microscopy (BAM). The results of two-dimensional shear rheological measurements revealed the existence of temporarily cross-linked networks. In dynamic BAM experiments, we observed a swinging motion of the monolayers as a result of a sudden externally initiated mechanical perturbation. The viscoelastic film response, which relaxed with time as the external force vanished, could be traced back to the presence of foam-like supramolecular structures that interlinked solid-condensed domains. The temperature dependence of the elastic response implied that the solid domains decomposed at temperatures close to the bulk melting point of Span 60 and Span 65. We concluded that insoluble surfactants formed solid domains at the interface, which were linked with each other by nonsolid areas, giving viscoelastic films. These newly discovered insights into coherent film formations could provide new opportunities for designing mechanically stable surfactant interfaces.  相似文献   
3.
Carbene‐metal‐amides (CMAs) are a promising family of donor–bridge–acceptor molecular charge‐transfer (CT) emitters for organic light‐emitting diodes. A universal approach is demonstrated to tune the energy of their CT emission. A blueshift of up to 210 meV is achievable in solid state via dilution in a polar host matrix. The origin of this shift has two components: constraint of thermally‐activated triplet diffusion, and electrostatic interactions between guest and polar host. This allows the emission of mid‐green CMA archetypes to be tuned to sky blue without chemical modifications. Monte‐Carlo simulations based on a Marcus‐type transfer integral successfully reproduce the concentration‐ and temperature‐dependent triplet diffusion process, revealing a substantial shift in the ensemble density of states in polar hosts. In gold‐bridged CMAs, this shift does not lead to a significant change in luminescence lifetime, thermal activation energy, reorganization energy, or intersystem crossing rate. These discoveries offer new insight into coupling between the singlet and triplet manifolds in CMA materials, revealing a dominant interaction between states of CT character. The same approach is employed using materials which have been chemically modified to alter the energy of their CT state directly, shifting the emission of sky‐blue chromophores into the practical blue range.  相似文献   
4.
Interface control remains a top challenge of solution-processed organic light emitting diodes (OLED) stacks since the device performance heavily relies on it. Film stability of an inkjet deposited and crosslinked layer against subsequent exposure to a suitable inkjet printed solvent has been investigated. Impact of processing solvent (solvent used to prepare the polymer layer) on solution-cast thin film properties has already been shown for polymer films. To our knowledge, this study is the first one analyzing thin films stability against solvent exposure using technology relevant materials processed via inkjet printing (IJP). The outcome of this research showed that the stability of the crosslinked films is affected by the solvent used for ink formulation. These findings are of great interest for multilayered semiconductors devices, such as OLEDs, field-effect transistors and dye-sensitized solar cells. Differential scanning calorimetry (DSC) was used to quantify the efficiency of the polymer crosslinking reaction in pure powder and in thin films, as processed from different solvents. Crosslinking efficiency measured by DSC correlated well with the deformation induced by the solvent and observed on layer surfaces. The interaction in solution between polymer and solvent has also been evaluated to explain its impact on thin film stability against successive solvent printing. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48895.  相似文献   
5.
6.
Although the density of states (DOS) distribution of charge transporting states in an organic semiconductor is vital for device operation, its experimental assessment is not at all straightforward. In this work, the technique of energy resolved–electrochemical impedance spectroscopy (ER-EIS) is employed to determine the DOS distributions of valence (highest occupied molecular orbital (HOMO)) as well as electron (lowest unoccupied molecular orbital (LUMO)) states in several organic semiconductors in the form of neat and blended films. In all cases, the core of the inferred DOS distributions are Gaussians that sometimes carry low energy tails. A comparison of the HOMO and LUMO DOS of P3HT inferred from ER-EIS and photoemission (PE) or inverse PE (IPE) spectroscopy indicates that the PE/IPE spectra are by a factor of 2–3 broader than the ER-EIS spectra, implying that they overestimate the width of the distributions. A comparison of neat films of MeLPPP and SF-PDI2 or PC(61)BM with corresponding blends reveals an increased width of the DOS in the blends. The results demonstrate that this technique does not only allow mapping the DOS distributions over five orders of magnitude and over a wide energy window of 7 eV, but can also delineate changes that occur upon blending.  相似文献   
7.
Mechanics of Time-Dependent Materials - A constitutive material law for linear viscoelasticity in the time domain is presented. It does not only allow for anisotropic elastic behavior but also for...  相似文献   
8.
9.
10.
This review summarizes the results found in studies investigating the enzymatic activation of two genotoxic nitro-aromatics, an environmental pollutant and carcinogen 3-nitrobenzanthrone (3-NBA) and a natural plant nephrotoxin and carcinogen aristolochic acid I (AAI), to reactive species forming covalent DNA adducts. Experimental and theoretical approaches determined the reasons why human NAD(P)H:quinone oxidoreductase (NQO1) and cytochromes P450 (CYP) 1A1 and 1A2 have the potential to reductively activate both nitro-aromatics. The results also contributed to the elucidation of the molecular mechanisms of these reactions. The contribution of conjugation enzymes such as N,O-acetyltransferases (NATs) and sulfotransferases (SULTs) to the activation of 3-NBA and AAI was also examined. The results indicated differences in the abilities of 3-NBA and AAI metabolites to be further activated by these conjugation enzymes. The formation of DNA adducts generated by both carcinogens during their reductive activation by the NOQ1 and CYP1A1/2 enzymes was investigated with pure enzymes, enzymes present in subcellular cytosolic and microsomal fractions, selective inhibitors, and animal models (including knock-out and humanized animals). For the theoretical approaches, flexible in silico docking methods as well as ab initio calculations were employed. The results summarized in this review demonstrate that a combination of experimental and theoretical approaches is a useful tool to study the enzyme-mediated reaction mechanisms of 3-NBA and AAI reduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号