首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学工业   8篇
金属工艺   1篇
一般工业技术   1篇
冶金工业   2篇
自动化技术   2篇
  2022年   1篇
  2017年   2篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1999年   1篇
  1992年   1篇
  1976年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
This work deals with the additive manufacturing and characterization of hydroxyapatite scaffolds mimicking the trabecular architecture of cancellous bone. A novel approach was proposed relying on stereolithographic technology, which builds foam-like ceramic scaffolds by using three-dimensional (3D) micro-tomographic reconstructions of polymeric sponges as virtual templates for the manufacturing process. The layer-by-layer fabrication process involves the selective polymerization of a photocurable resin in which hydroxyapatite particles are homogeneously dispersed. Irradiation is performed by a dynamic mask that projects blue light onto the slurry. After sintering, highly-porous hydroxyapatite scaffolds (total porosity ~0.80, pore size 100-800 µm) replicating the 3D open-cell architecture of the polymeric template as well as spongy bone were obtained. Intrinsic permeability of scaffolds was determined by measuring laminar airflow alternating pressure wave drops and was found to be within 0.75-1.74 × 10−9 m2, which is comparable to the range of human cancellous bone. Compressive tests were also carried out in order to determine the strength (~1.60 MPa), elastic modulus (~513 MPa) and Weibull modulus (m = 2.2) of the scaffolds. Overall, the fabrication strategy used to print hydroxyapatite scaffolds (tomographic imaging combined with digital mirror device [DMD]-based stereolithography) shows great promise for the development of porous bioceramics with bone-like architecture and mass transport properties.  相似文献   
2.
3.
Direct nitric oxide decomposition over perovskites is fairly slow and complex, its mechanism changing dramatically with temperature. Previous kinetic study for three representative compositions (La0.87Sr0.13Mn0.2Ni0.8O3−δ, La0.66Sr0.34Ni0.3Co0.7O3−δ and La0.8Sr0.2Cu0.15Fe0.85O3−δ) has shown that depending on the temperature range, the inhibition effect of oxygen either increases or decreases with temperature. This paper deals with the effect of CO2, H2O and CH4 on the nitric oxide decomposition over the same perovskites studied at a steady-state in a plug-flow reactor with 1 g catalyst and total flowrates of 50 or 100 ml/min of 2 or 5% NO. The effect of carbon dioxide (0.5–10%) was evaluated between 873 and 923 K, whereas that of H2O vapor (1.6 or 2.5%) from 723 to 923 K. Both CO2 and H2O inhibit the NO decomposition, but inhibition by CO2 is considerably stronger. For all three catalysts, these effects increase with temperature. Kinetic parameters for the inhibiting effects of CO2 and H2O over the three perovskites were determined. Addition of methane to the feed (NO/CH4=4) increases conversion of NO to N2 about two to four times, depending on the initial NO concentration and on temperature. This, however, is still much too low for practical applications. Furthermore, the rates of methane oxidation by nitric oxide over perovskites are substantially slower than those of methane oxidation by oxygen. Thus, perovskites do not seem to be suitable for catalytic selective NO reduction with methane.  相似文献   
4.
5.
Blends of polyethylene terephthalate (PET) and ethylene‐ethyl acrylate‐maleic anhydride terpolymer (E‐EA‐MAH) were dynamically crosslinked in a one‐step extrusion process. An amine‐terminated glycol reacting with MAH moieties was used as the crosslinking agent. The effect of blend composition and dynamic crosslinking on the microstructure and mechanical properties were investigated. Blend ratios ranging from 80:20 to 20:80 PET/E‐EA‐MAH were studied. The region of phase inversion was located for uncrosslinked and dynamically crosslinked blends. The rheological characterization was also carried out for these blends in comparison with the neat materials. After dynamic crosslinking, the phase inversion is shifted from the 30–40% range to the 70–80% range of elastomer content. This shift is induced by the increase of viscosity and elasticity of the network formed. Dynamically crosslinked blends show significant improvements in impact strength but also exhibit a decrease in elongation at break.  相似文献   
6.
7.
Linearizability is a global correctness criterion for concurrent systems. One technique to prove linearizability is applying a composition theorem which reduces the proof of a property of the overall system to sufficient rely-guarantee conditions for single processes. In this paper, we describe how the temporal logic framework implemented in the KIV interactive theorem prover can be used to model concurrent systems and to prove such a composition theorem. Finally, we show how this generic theorem can be instantiated to prove linearizability of two classic lock-free implementations: a Treiber-like stack and a slightly improved version of Michael and Scott’s queue.  相似文献   
8.
An existing method to measure particle velocity is particle image velocimetry which requires presence of tracer materials. This method of contrast enhancement is not always applicable in an industrial setting. Therefore a method to assess the movement of small, structures has been introduced, called powder surface velocimetry (PSV). The principle of PSV is to follow the movement of small structures on the surface of the powder bed. The displacement of the structure is correlated with velocity. The rate of the blade of a blender was quantified to assess the validity of PSV. Next the powder surface velocity of lactose 100 M was measured by PSV and was found to be in line with expected values and flow regimes. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   
9.
The coordination number is an important parameter for understanding the particulate systems, especially when agglomerated particles are present. However, experimental determination of the coordination number is not trivial. In this study, we describe a 3D classification method, which is based on the revised DBSCAN (Density-Based Spatial Clustering of Applications with Noise) and its application to X-ray micro-tomographic (XMT) images to determine the coordination number distribution. Pellets of micro-crystalline cellulose were used as model particles. The validity of the segmentation was checked by comparing the particle size distribution (PSD) obtained by XMT-DBSCAN with PSD obtained by optical microscopy. The results were found to be in good agreement, demonstrating the suitability of the DBSCAN method. The means and standard deviations of coordination numbers were (8.2±1.7, n=994 particles), (8.1±1.5, n=904) and (6.2±1.2, n=159) for pellets with length based mean sizes of 157, 307 and 437 μm, respectively. The coordination number distribution was in line with previous finding in mono-sized acrylic beads.  相似文献   
10.
The ternary blends of high‐density polyethylene (PE), EPDM terpolymer and polypropylene (PP) have been used as a model low interfacial tension system to study encapsulation dynamics in ternary blends and their relation to the blends' mechanical properties. It was found that the modulus, tensile strength and impact resistance can be improved by PE addition if the PE is localized within the EPDM phase. A range of blend morphology was found depending on the PE viscosity and polymer incorporation sequence in the twin‐screw extruder. In the most favorable sequence, PE and EPDM were mixed together prior to their dispersion in the PP matrix. This practice resulted in a 50% increase in impact resistance when compared to mixing the three components in a single‐step.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号