首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
化学工业   13篇
轻工业   1篇
冶金工业   1篇
自动化技术   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2018年   1篇
  2016年   2篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2005年   1篇
  1998年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
In this study, we prepared a novel series of diester-functionalized cationic gemini surfactants (Cm-E2O2-Cm) containing ethylene oxide as a spacer with varying alkyl chain lengths and characterized by 1H NMR, FT-IR, elemental analysis, and ESI-MS. The physicochemical properties of the geminis were explored by tensiometry, fluorescence, dye solubilization, and Krafft point. These geminis acquire superior surface activity than the conventional surfactants. Fluorescence spectroscopy analysis affirmed that the micropolarity and aggregation number of micelles diminished with increase in the alkyl chain length. These geminis represent a new group of amphiphiles of considerably high biodegradability, better cleavability, and low toxicity as assessed by BOD test, FT-IR analysis, and HC50 analysis, respectively. They also showed significant level of antimicrobial activity toward some specified bacterial strains of Gram-positive and Gram-negative by using agar well diffusion method. Furthermore, the thermogravimetric analysis provided information regarding thermal stabilities of the newly synthesized gemini surfactants.  相似文献   
2.
Microsystem Technologies - Prediction is a method of detecting a person's behavior toward online buying by evaluating publically available evaluations on the web. Understanding expressive human...  相似文献   
3.
The interaction of cationic gemini and cationic conventional surfactants by conductivity was systematically overviewed, paying attention to synergism observed in micellization. These mixed systems were found to show remarkable synergism in micelle formation. The experimental critical micelle concentration values being lower than the value predicted by ideal solution theory indicate that the mixed micellization is due to attractive interaction between the two components. Gemini/conventional systems form mixed micelle due to attractive interactions (negative β values). The values of micellar mole fraction of constituent 1 (X 1) in surfactant mixtures are more than in the ideal state (X 1 ideal ), which means that, the mixed micelles are rich in conventional surfactants in comparison to that in the ideal state.  相似文献   
4.
Herein we report the micellization and cloud point of an amitriptyline hydrochloride (AMT) under the influence of cationic, anionic and nonionic hydrotropes. Anionic hydrotropes were employed to know the micellar and surface behaviors, besides studying the clouding behavior of AMT drug with cationic, anionic and nonionic hydrotropes. Tensiometric study has been performed and the properties studied include the critical micelle concentration (cmc), maximum surface excess at the air/water interface (Γmax), the minimum area per of amphiphilic molecule at air/water interface (Amin), and the different thermodynamic parameters, besides clouding phenomenon. Interaction parameters of micelles (βm) and monolayer (βσ) indicate that drug-hydrotrope systems show better interaction at the interface than in micelles.  相似文献   
5.
The interaction between the amphiphilic drug amitriptyline hydrochloride (AMT) and the nonionic surfactants used in drug delivery has been investigated. Herein, we report the micellization behavior of AMT in presence of ethoxylated alkyl phenols in aqueous medium and the clouding phenomenon in the absence and presence of different nonionic surfactants in buffer solution. The values of critical micelle concentration (CMC) of AMT obtained using the conductivity method, decrease as nonionic surfactant concentration increases. With an increase in temperature, the CMC first increases and then decreases. At 303.15 K, the maximum CMC values were obtained with or without nonionic surfactant. The results obtained indicate attractive interactions (synergism) between the two mixing amphiphiles in solution. The experimentally obtained critical micelle concentration (CMC) values are always lower than ideal CMC values. Micellar mole fraction (X1) values, calculated by different proposed models, show the contribution of nonionic surfactant concentration. At a fixed drug concentration (50 mmol kg?1) and pH (=6.7) nonionic surfactants show continuous increase in cloud point (CP). Increase in drug concentration and pH, in the presence of fixed amounts of nonionic surfactant, increases and decreases the CP, respectively.  相似文献   
6.
The effect of various organic additives, viz. sugars, ureas, alcohols, hydrotropes and bile salts on the clouding (phase separation) phenomenon of the amphiphilic antidepressant drug amitriptyline hydrochloride was investigated in the present study. All sugars lowered the cloud point (CP) due to their water structure-making property. Urea and alkylureas were found to lower the CP. In contrast, thioureas increased the CP slightly, but the presence of methyl group(s) had a similar effect in alkylureas. Short chain alcohols affected the CP insignificantly while higher ones decreased it, and medium chain alcohols showed peak behavior. Addition of hydrotropes and bile salts increased the CP at lower concentrations, while a decrease was observed at higher concentrations (like the medium chain alcohols). In addition, thermodynamic parameters were also evaluated but only for those additives which formed mixed micelles with the drug.  相似文献   
7.
The reactions of Cefuroxime (CFA) by hexacyanoferrate (III) (HCF(III)) in alkaline medium at a constant ionic strength has been studied spectrophotometrically. It is a first order reaction, but fractional order in both CFA and alkali. Decrease in dielectric constant of the medium decreases the rate of reaction. The effect of added products and ionic strength has also been investigated. A mechanism involving free radicals is proposed. In a composite equilibrium step, CFA binds to HCF(III) to form a complex that subsequently decomposes to the products. The main two products were separated and identified by column chromatography, TLC and FT-IR. There is good agreement between the observed and calculated rate constants under different experimental conditions. The reaction was studied at different temperatures and activation parameters were computed with respect to the slow step of the proposed mechanism.  相似文献   
8.
Tuning physicochemical properties of aqueous surfactant solutions comprised of normal or reverse micelles by external additives is of utmost importance due to the enormous application potential of surfactant‐based systems. Unusual and interesting properties of environmentally benign ionic liquids (IL) make them suitable candidates for this purpose. To understand and establish the role of IL in modifying properties of aqueous gemini surfactants, we studied the effect of the IL, 1‐hexyl‐3‐methylimidazolium bromide ([Hmim][Br]) and 1‐octyl‐3‐methylimidazolium bromide ([Omim][Br]) on the properties of the aqueous cationic gemini surfactant 1,6‐hexanediyl‐α,ω‐bis(dimethyltetradecyl)ammonium bromide (14‐6‐14,2Br?). The behavioral changes were investigated by measuring the critical micelle concentration (CMC) using electrical conductance, surface tension, dye solubilization and fluorescence probe measurements at 298.15 K. It was observed that the CMC of 14‐6‐14,2Br? gemini surfactant decreases with addition of IL, thus favoring the micellization process. An increase in micellar size was observed at lower IL concentration using dynamic light scattering, with a decrease in aggregation number (Nagg) determined from fluorescence probe quenching measurements. It is noteworthy that the extent of modulation of the micellar properties is different for both the IL due to their structural differences. IL behave like electrolytes at lower concentrations and cosurfactants at higher concentrations and form mixed micelles with the cationic gemini surfactant showing an increase in Nagg.  相似文献   
9.
Strategies to mitigate the expected “cellulose gap” include increased use of wood cellulose, fabric reuse, and recycling. Ionic liquids (ILs) are employed for cellulose physical dissolution and shaping in different forms. This review focuses on the regeneration of dissolved cellulose as nanoparticles, membranes, nonwoven materials, and fibers. The solvents employed in these applications include ILs and alkali solutions without and with additives. Cellulose fibers obtained via the carbonate and carbamate processes are included. Chemical recycling (CR) of polycotton (cellulose plus poly(ethylene terephthalate)) is addressed because depending on the recycling approach employed, this process is akin to regeneration. The strategies investigated in CR include preferential dissolution or depolymerization of one component of the blend, and separation of both components using ILs. It is hoped that this review focuses the attention on the potential applications of regenerated cellulose from its solutions and contributes to the important environmental issue of recycling of used materials.  相似文献   
10.
A novel polymeric composite namely, PANI‐PW/Ag (silver doped polyaniline phosphotungstate) was expediently obtained by sol‐gel method. PANI‐PW/Ag was characterized by Fourier transform infrared spectroscopy, X‐ray powder diffraction, UV–vis spectrophotometry, scanning electron microscopy, and thermogravimertic analysis. On the basis of ion exchange capacity and distribution studies, PANI‐PW/Ag, highly selective and sensitive to Cu(II), was used for the preparation of ion selective membrane for Cu(II). The electrode exhibits good potentiometric response for Cu(II) over a wide concentration range (1.0 × 10−1−5.0 × 10−6 mol) with Nernstian slope of 27.8 mV per decade. Response time of the electrode is 9 s and it could be used for a period of 3 month and exhibits good selectivity toward Cu2+ in comparison to alkali, alkaline earth, transition, and heavy metal ions, with no interference caused by other heavy metals. POLYM. COMPOS., 35:1436–1443, 2014. © 2013 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号