首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31678篇
  免费   2860篇
  国内免费   1039篇
电工技术   1315篇
技术理论   3篇
综合类   1450篇
化学工业   6225篇
金属工艺   1439篇
机械仪表   1803篇
建筑科学   2118篇
矿业工程   941篇
能源动力   975篇
轻工业   3514篇
水利工程   527篇
石油天然气   1478篇
武器工业   158篇
无线电   3082篇
一般工业技术   4543篇
冶金工业   1651篇
原子能技术   248篇
自动化技术   4107篇
  2024年   67篇
  2023年   541篇
  2022年   660篇
  2021年   1243篇
  2020年   990篇
  2019年   899篇
  2018年   1084篇
  2017年   1127篇
  2016年   1173篇
  2015年   1288篇
  2014年   1679篇
  2013年   2381篇
  2012年   2312篇
  2011年   2196篇
  2010年   1868篇
  2009年   1736篇
  2008年   1760篇
  2007年   1631篇
  2006年   1564篇
  2005年   1293篇
  2004年   948篇
  2003年   860篇
  2002年   883篇
  2001年   690篇
  2000年   634篇
  1999年   665篇
  1998年   537篇
  1997年   464篇
  1996年   424篇
  1995年   369篇
  1994年   344篇
  1993年   260篇
  1992年   199篇
  1991年   140篇
  1990年   79篇
  1989年   84篇
  1988年   91篇
  1987年   53篇
  1986年   50篇
  1985年   39篇
  1984年   29篇
  1983年   18篇
  1982年   25篇
  1981年   21篇
  1980年   18篇
  1979年   27篇
  1978年   11篇
  1974年   9篇
  1973年   11篇
  1947年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
The effects of non-thermal plasma (NTP) on the physicochemical properties of wheat flour and the quality of fresh wet noodles ( FWN) were investigated. The results showed that NTP effectively decreased the total plate count (TPC), yeast and mould count (YMC) and Bacillus spp. in wheat flour. Wet gluten contents and the stability time reached the maximum when treated for 20 s. The viscosity of starch increased significantly after treatment due to the increased of damaged starch. The contents of secondary structure were altered to some extent, which was because that the ordered network structure of gluten protein broken. Furthermore, compared with the control, texture properties of FWN were enhanced significantly at 20 s, and the darkening rate of FWN was greatly inhibited due to the low polyphenol oxidase (PPO) activity. Consequently, the most suitable treatment was 500 W for 20 s, providing a basis for the application of NTP in flour products.  相似文献   
3.
Walnut flour (WF), a by-product of walnut oil production, is characterised by high polyunsaturated fatty acids, proteins, and fibre contents and presents suitability for bakery products. However, when using non-traditional ingredients, it is essential to evaluate the effect on the quality properties of the final product. So, this work aimed to assess the impact of WF on the technological, physicochemical, and sensory properties of gluten-free (GF) cakes. WF was added at a flour blend (cassava (CS) and maize (MS) starches and rice flour) at 0, 10%, 15%, and 20%. The results showed that WF modified starch gelatinisation, increased amylose–lipid complex (ALC) content, and made crumbs easier to chew. Besides, the total dietary fibre (TDF) and protein content significantly increased. Cakes with 15% WF presented the highest specific volume (SV) and no differences in overall acceptability with respect to control. Hence, WF is a suitable ingredient for gluten-free bakery products.  相似文献   
4.
5.
6.
The ceramic joining using electric field (E-field) has garnered significant research attention due to the decreased joining barrier and enhanced reliability. However, the underlying mechanism of E-field assisted joining remains unclear. Herein, we report the rapid joining of alumina ceramics using a small current. Moreover, the E-field is applied in both perpendicular and parallel directions to the faying surfaces, demonstrating a significant difference in terms of joint strength. These results indicate that the E-field generates defects and promotes the joining process by facilitating ionic diffusion.  相似文献   
7.
In order to prepare waterborne polyurethane with excellent water resistance and thermodynamic properties, a series of side chain fluorinated waterborne polyurethane-urea (FWPU-UA) was synthesized with polytetramethylene ether glycol, N-(2-methyl-1,3-propanediol-2′-)-perfluoro-1-butanesulfonyl amine (NPBA), isophorone diisocyanate, and isophoronediamine. With the increase of NPBA content, the weight loss temperature, glass transition temperature, and tensile strength of FWPU-UA were all improved. Gaussian fitting analysis of infrared data and density functional theory simulation proved that the introduction of fluorine side chains increased the interaction of hydrogen bonding in the FWPU-UA. X-ray photoelectron spectroscopy analysis indicated that the aggregation of fluorine atoms on the surface of film were caused by the migration and enrichment of fluorine side chains. Furthermore, the water resistance of polyurethane-urea film could be significantly improved by adding a small amount of NPBA, and the seven-day water absorption rate of polyurethane-urea film was reduced from 30.13% to 12.55%.  相似文献   
8.
Calcium hexaluminate (CA6) is an intrinsically densification-resistant material, therefore, its porous structures are key materials for applications as high-temperature thermal insulators. This article reports on the combination of calcined alumina and calcium aluminate cement (CAC) in castable aqueous suspensions for the in situ production of porous CA6. The CAC content (10–34 vol%) and the curing conditions ensure structural integrity prior to sintering and maximize the development of hydrated phases. Changes in physical properties, crystalline phases, and microstructure were investigated after isothermal treatments (120–1500 °C), and three sequential porogenic events were observed. The hydration of CAC preserved the water-derived pores (up to 120 °C), and the dehydroxylation of CAC hydrates (250–700 °C) generated inter-particles pores. Moreover, the in situ expansive formation of CA2 and CA6 (900–1500 °C) hindered densification and generated intra-particle pores. Such events differed from those observed with other CaO sources, and resulted in significantly higher pores content and lower thermal conductivity.  相似文献   
9.
A novel ternary hybrid flame retardant named P-g-C3N4@PGS-Ti was prepared through step-by-step method. First, titanium dioxide was loaded on PGS to make PGS-Ti (where PGS = palygorskite), and then, PGS-Ti was decorated by phosphor-doped g-C3N4 (abbreviated as P-g-C3N4) to prepare a ternary flame retardant of P-g-C3N4@PGS-Ti. It showed that P-g-C3N4@PGS-Ti could efficiently improve the flame retardancy of epoxy resins (EP). The structure and the morphology of P-C3N4@PGS-Ti were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scaanning electron microscopy and hermogravimetric analysis (TGA). The flame retardancy and the burning behavior of 5 wt% P-g-C3N4@PGS-Ti composited EP were well investigated through TGA, limiting oxygen index (LOI), cone calorimeter test (CCT) and vertical burning test (UL-94 standard). It was found that the peak heat releasing (pk-HRR) of the EP/P-g-C3N4@PGS-Ti composite reduced 36% (from 1459 to 852 kW/m2) with the addition of 5 wt% of P-g-C3N4@PGS-Ti flame retardant to the matrix of EP. The combustion residue analysis showed that the EP/P-g-C3N4@PGS-Ti composite gained the most continuous and firmest char yield due to the synergistic effect of PGS, TiO2 and the introducing of P element. The mechanism proved that the combination of gas phase and condensed phase flame-retardant processes were well coordinated to improve the fire retardancy for EP. We tested and studied the mechanical properties of EP/P-g-C3N4@PGS-Ti composites. Only 2.4% decreasing of flexural strength and 23.5% decreasing of impact strength in EP/P-g-C3N4@PGS-Ti composites compared to pure EP, respectively. But according to the test results of EP/P-g-C3N4@PGS-Ti composite material and the control sample in the system, EP/P-g-C3N4@PGS-Ti composite material had the highest flexural modulus and impact strength.  相似文献   
10.
HfC nanowires modified carbon fiber cloth laminated carbon/carbon (HfCnw-C/C) composites were fabricated by in situ growth of HfC nanowires on carbon cloths via catalytic CVD, followed with lamination of the cloths and densification by pyrolytic carbon (PyC). Morphologies, thermal conductivity, coefficient of thermal expansion (CTE), and ablation resistance of the composites were investigated. Due to the loading of HfC nanowires, the matrix PyC with low texture was obtained; the thermal conductivity of the composites in the Z direction was enhanced from 100℃ to 2500℃; CTE along the X–Y direction also decreased in the range of 2060 ℃ – 2500 ℃, which reaches the maximum of 24 % at 2500℃. Moreover, the 20s-ablation-resistance of HfCnw-C/C composites exhibits mass and linear ablation rates of 5.3 mg/s and 21.0 μm/s, which are 40 % and 37 % lower than those of pure C/C composites, respectively. Our work shows laminated HfCnw-C/C composites are a promising candidate for high-temperature applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号