首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学工业   2篇
一般工业技术   2篇
  2018年   2篇
  2015年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Ferrites may contain single domain particles which gets converted into super-paramagnetic state near critical size. To explore the existence of these characteristic feature of ferrites, we have performed magnetization(M-H loop) and Mössbauer spectroscopic studies of Ni2+ substitution effect in Co1-xNixFe2O4 (where x?=?0, 0.25, 0.5, 0.75 and 1) nanoparticles were fabricated by solution combustion route using mixture of carbamide and glucose as fuels for the first time. As prepared samples exhibit spinel cubic structure with lattice parameters which decreases linearly with increase in Ni2+ concentration. The M-H loops reveals that saturation magnetization(Ms), coercive field(Hc) remanence magnetization(Mr) and magnetron number(ηB) decreases significantly with increasing Ni2+ substitution. The variation of saturation magnetization has been explained on the basis of Neel's molecular field theory. The coercive field(Hc) is found strongly dependent on the concentration of Ni2+ and decrease of coercivity suggests that the particles have single domain and exhibits superparamagnetic behavior. The Mössbauer spectroscopy shows two ferrimagnetically relaxed Zeeman sextets distribution at room temperature. The dependence of Mössbauer parameters such as isomer shift, quadru pole splitting, line width and hyperfine magnetic field on Ni2+ concentration have been discussed. Hence our results suggest that synthesized materials are potential candidate for power transformer application.  相似文献   
2.
3.
Nanocrystalline Ni1?xZnxFe2O4 (where, x = 0.0, 0.2, 0.4, 0.6, 0.8 & 1) samples were synthesized through solution combustion technique using oxylyl de-hydrazide (ODH) as a fuel and the effect of dopant and its concentration on the structural and magnetic properties was investigated. As-prepared samples were characterized using different characterization techniques such as, XRD, SEM-EDS, TEM and Raman spectroscopy for their phase-purity, crystallinity, surface morphology and elemental composition; also magnetic properties were investigated through EPR, Mossbauer spectroscopy and vibrating sample magnetometer (VSM). Rietveld fitted XRD and Raman studies confirm the formation of cubic spinel structured ferrites and substitution of Zn ion at Ni site without formation of impurity phases. No other structural changes were observed and the structure remains in cubic phase with increase of Zn concentration. SEM and TEM micrographs reveal that the particles are agglomerated and the particles size were found in the nano range. Also good stoichiometric composition was observed in all the compositions of Zn substituted Ni ferrite samples. Magnetic measurements (VSM) reveal that pure Ni ferrites exhibits soft magnetic behaviour. Further the ferromagnetic behaviour suppressed with the substitution of diamagnetic Zn ion and with increase of its concentration in Ni ferrites, which was further evidenced in the Mossbauer spectroscopic results. At room temperature, electronic paramagnetic resonance spectra exhibits a broad resonance signal with Lande's g factor varies from 2.23 to 1.95 with increase in Zn content, which is attributed to spin exchange interactions between Fe3+, Ni2+ and Zn2+ ions also asymmetric EPR spectra was observed. The investigated results show that, Zn substitution has greater impact on the magnetic properties of Ni ferrites due to the diamagnetic nature of Zn, which inturn alters the cationic distribution and the exchange interactions between Ni-Fe and Fe-Fe.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号