首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
化学工业   8篇
  2023年   1篇
  2020年   3篇
  2018年   2篇
  2016年   1篇
  2008年   1篇
排序方式: 共有8条查询结果,搜索用时 14 毫秒
1
1.
We report a systematic investigation on the structure–property relationships in glycerol-plasticized poly(vinyl alcohol) (PVA)/cassava starch blends prepared via solution casting. In particular, PVA mixed with native, low-oxidized, high-oxidized, and pregelatinized cassava starches were characterized by means of SEM, XRD, FTIR, thermal analysis and mechanical testing and the immiscible systems were received. Burial tests over a period of several days suggested the preferential degradation of the starch and glycerol component (as indicated by the absence of FTIR signatures of those components) and the amorphous phase of PVA (as indicated by the enhanced crystallinity index of the degraded samples). The rheological properties of the blends seem to dictate their morphological characteristics that, in turn, have a profound impact on their mechanical properties. In that sense, the study highlights promising strategies for the development of a new family of polymeric materials that combine their biodegradable nature within superior mechanical properties. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48848.  相似文献   
2.
Thermally stable materials can be achieved by crosslinking. This article presents the thermal aging and thermal energy storage properties of ethylene–octene copolymer (EOR) and low‐density polyethylene (LDPE) blends as affected by silane crosslinking. Fourier transform infrared spectroscopy revealed a similar degree of silane grafting among the various blend compositions. However, the highest crosslink content was observed in EOR, whereas the lowest was found for LDPE. From melting temperature and heat of fusion data, a linear relationship between the amount of the crystalline component and the crosslink content was found. The decrease in crystallinity due to crosslinking was very limited, which implied a high thermal energy storage capacity of the silane‐crosslinked products and their good mechanical properties at room temperature. Furthermore, a strong ability to retain the properties after thermal aging indicated good thermal stability of the materials. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
3.
Rubber wood sawdust (RWS) was used as a reinforcement for wheat gluten based bioplastics. The RWS content was varied from 0, 5, 10, 15–20 wt %. Effects of the RWS content on the morphology, water absorption, mechanical, thermal, and biodegradation properties of the wheat gluten based bioplastic were investigated. An addition of RWS caused an improvement of the tensile strength and water resistance of the wheat gluten based bioplastics. Scanning electron micrograph of the wheat gluten/RWS composites with a 10 wt % of RWS revealed a good dispersion and uniform embedding of the RWS within the wheat gluten matrix. Agglomeration of RWS was observed when the RWS loads were increased (15 and 20 wt %). The biodegradation process of the composites depended on the amount of RWS. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43705.  相似文献   
4.
Mesoporous silica nanoparticles (MSNPs) have been used in variety of applications due to their morphology and porous structure. This work reports the one-pot synthesis of ultrahydrophobic MSNPs using N-cetyl-n,n,n trimethyl ammonium bromide as a cationic surfactant template and ethanol (EtOH) as a cosolvent to form mesopores in the MSNPs. The effects of EtOH on the size and the pore structure of the MSNPs were studied by scanning electron microscopy and transmission electron microscopy. The results show that an addition of EtOH led to an enlargement of the MSNPs and a change in pore structure from a lamellar structure to a radially oriented structure. Co-condensation with two different types of fluoroalkyl silanes; trimethyl(fluoromethyl)silane, and trichloro(1H,1H,2H,2H-perfluorooctyl)silane provided low surface energy MSNPs with a core–shell structure. An assembly on the surface of these F-MSNPs generated nanostructure surface roughness rendering an improvement in surface wettability with water contact angle of 158.6°, which is a characteristic of oleophobic and ultrahydrophobic material.  相似文献   
5.

Biodegradable films are used in a variety of applications, including packaging. However, their use is limited due to their high moisture and water sensitivity. In this work, cassava starch (CS) was blended with poly(vinyl alcohol) (PVA). Silica particles (SiO2) were incorporated to increase the hydrophobicity of the blend by intermolecular interaction through hydrogen bonding between the three components. Instead of a plasticizer or crosslinker, a small amount of triethylamine was added to eliminate residual acetate groups in PVA. The miscibility of CS and PVA phases was confirmed by smooth fracture surfaces and a single glass transition temperature. When SiO2 content was below 5% (wt), the particles were well dispersed in a continuous phase of polymer matrix. At this loading of SiO2, the increase in tensile strength was as high as 170% and in elongation-at-break, 250%. All loadings of SiO2 increased thermal stability of the blend films because silanol groups on the surface of SiO2 particles formed effective interfacial interactions with hydroxyl groups of the polymers. These interactions also prevented the ingress of water molecules, significantly increasing the hydrophobicity of the films. The water contact angle increased as high as 113° and moisture absorbency and water solubility were low. These highly hydrophobic, photodegradable, biodegradable CS/PVA/SiO2 films show great potential as a low-cost, eco-friendly material.

  相似文献   
6.
Tough biodegradable films were prepared using a poly(vinyl alcohol) (PVA)/poly(vinyl pyrrolidone) (PVP) (1:1) blend with plasticizers of glycerol (GLY), sorbitol (SOR), and their (one to one) mixture. We studied the effect of plasticization on the structural, thermal, and mechanical properties of the PVA/PVP blend films. Fourier transform infrared spectra indicated good miscibility of the two components due to the H‐bonding between the PVA and PVP molecules. The addition of plasticizers reduced the interaction between PVA and PVP, evidenced by an increase in the intensity of PVA diffraction peaks observed in the X‐ray diffraction (XRD) characterization. Thermal degradation of the blends increased as a function of the plasticizer used. GLY affected thermal degradation more than SOR and the mixtures. The incorporation of the plasticizers promoted the growth of PVA crystals as evidenced by XRD patterns and the enthalpy of fusion (ΔHf) obtained by differential scanning calorimetry measurements. The introduction of SOR to the binary blend increased toughness seven times and imparted simultaneous and pronounced improvements to maximum tensile stress and elongation at break. This behavior holds out great promise for the development of a new generation of mechanically robust, yet thoroughly biodegradable materials that could effectively supplant conventional polymers in demanding applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46406.  相似文献   
7.
Superabsorbent core–shell particles were synthesized via a two-step process. A silica core was prepared by co-condensation of tetraethyl orthosilicate and vinyl triethoxysilane. The vinyl-functionalized silica particles were then polymerized with acrylamide monomer via free-radical polymerization to yield silica-polyacrylamide (PAM) hybrid particles. The crosslinking density and porosity of PAM on the hybrid particles were controlled by adjusting the concentration of the crosslinker, n,n′-methylenebisacrylamide (MBA). The structure of core–shell particles was confirmed by scanning and transmission electron microscopy techniques. The hybrid particles with 3.0%MBA could absorb water up to 70 g/g. These hybrid particles also removed 80% of methylene blue from solution within 24 h and this efficacy was maintained for seven cycles. The weight remaining of the hybrid particles after nine cycles was higher than that of pure PAM after three cycles indicating the high durability and reusability of the core–shell particles. POLYM. ENG. SCI., 60: 306–313, 2019. © 2019 Society of Plastics Engineers  相似文献   
8.
Industrial expansion has increased the discharge of contaminated wastewater. Wastewater can be treated by adsorption with petroleum-based hydrogels but the materials are not biodegradable and therefore cause secondary toxic waste. In this work, hydrogel composites are prepared based on non-biodegradable polyacrylamide and biodegradable materials of cassava starch (CS) and poly(vinyl alcohol). The effect of CS content on the porous structure is studied. The highest water absorption capacity of 74 g g−1 is obtained from a hydrogel 30 wt% of CS. Within 4 h, the hydrogel effectively adsorbs the cationic dyes methylene blue (MB) and crystal violet, and the anionic dyes congo red and reactive orange. The maximum adsorption capacity toward MB is 993 mg g−1. Experimental data indicate a monolayer adsorption via chemisorption. Silica-coated ZnO photocatalyst particles are synthesized via a sol–gel method and coated on the outer surface of the hydrogel. Under sunlight, the hydrogel composite degrades almost 90% of adsorbed dye. The hydrogel composite is capable of effective photodegradation for at least three cycles under artificial UV irradiation and four cycles under sunlight, but adsorption capacity remains higher than 80% at the eighth cycle. The hydrogel composite also shows antibacterial activities, indicating an additional beneficial property for industrial wastewater treatment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号