首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1817篇
  免费   106篇
  国内免费   7篇
电工技术   25篇
综合类   2篇
化学工业   364篇
金属工艺   68篇
机械仪表   132篇
建筑科学   31篇
矿业工程   4篇
能源动力   82篇
轻工业   131篇
水利工程   12篇
石油天然气   4篇
武器工业   1篇
无线电   302篇
一般工业技术   384篇
冶金工业   113篇
原子能技术   21篇
自动化技术   254篇
  2023年   36篇
  2022年   14篇
  2021年   76篇
  2020年   57篇
  2019年   73篇
  2018年   61篇
  2017年   58篇
  2016年   79篇
  2015年   51篇
  2014年   113篇
  2013年   143篇
  2012年   131篇
  2011年   144篇
  2010年   93篇
  2009年   98篇
  2008年   93篇
  2007年   98篇
  2006年   77篇
  2005年   50篇
  2004年   50篇
  2003年   45篇
  2002年   21篇
  2001年   38篇
  2000年   21篇
  1999年   21篇
  1998年   39篇
  1997年   24篇
  1996年   19篇
  1995年   12篇
  1994年   9篇
  1993年   16篇
  1992年   12篇
  1991年   3篇
  1990年   5篇
  1989年   9篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1977年   7篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1964年   1篇
  1941年   1篇
排序方式: 共有1930条查询结果,搜索用时 31 毫秒
1.
The positive effects of a lithiophilic substrate on the electrochemical performance of lithium metal anodes are confirmed in several reports, while the understanding of lithiophilic substrate-guided lithium metal nucleation and growth behavior is still insufficient. In this study, the effect of a lithiophilic surface on lithium metal nucleation and growth behaviors is investigated using a large-area Ti3C2Tx MXene substrate with a large number of oxygen and fluorine dual heteroatoms. The use of the MXene substrate results in a high lithium-ion concentration as well as the formation of uniform solid–electrolyte-interface (SEI) layers on the lithiophilic surface. The solid–solid interface (MXene-SEI layer) significantly affects the surface tension of the deposited lithium metal nuclei as well as the nucleation overpotential, resulting in the formation of uniformly dispersed lithium nanoparticles ( ≈ 10–20 nm in diameter) over the entire MXene surface. The primary lithium nanoparticles preferentially coalesce and agglomerate into larger secondary particles while retaining their primary particle shapes. Subsequently, they form close-packed structures, resulting in a dense metal layer composed of particle-by-particle microstructures. This distinctive lithium metal deposition behavior leads to highly reversible cycling performance with high Columbic efficiencies >  99.0% and long cycle lives of over 1000 cycles.  相似文献   
2.
Nonwoven super‐hydrophobic fiber membranes have potential applications in oil–water separation and membrane distillation, but fouling negatively impacts both applications. Membranes were prepared from blends comprising poly(vinylidene fluoride) (PVDF) and random zwitterionic copolymers of poly(methyl methacrylate) (PMMA) with sulfobetaine methacrylate (SBMA) or with sulfobetaine‐2‐vinylpyridine (SB2VP). PVDF imparts mechanical strength to the membrane, while the copolymers enhance fouling resistance. Blend composition was varied by controlling the PVDF‐to‐copolymer ratio. Nonwoven fiber membranes were obtained by electrospinning solutions of PVDF and the copolymers in a mixed solvent of N,N‐dimethylacetamide and acetone. The PVDF crystal phases and crystallinities of the blends were studied using wide‐angle X‐ray diffraction and differential scanning calorimetry (DSC). PVDF crystallized preferentially into its polar β‐phase, though its degree of crystallinity was reduced with increased addition of the random copolymers. Thermogravimetry (TG) showed that the degradation temperatures varied systematically with blend composition. PVDF blends with either copolymer showed significant increase of fouling resistance. Membranes prepared from blends containing 10% P(MMA‐ran‐SB2VP) had the highest fouling resistance, with a fivefold decrease in protein adsorption on the surface, compared to homopolymer PVDF. They also exhibited higher pure water flux, and better oil removal in oil–water separation experiments. © 2018 Society of Chemical Industry  相似文献   
3.
A low‐powered and highly selective photomechanical sensor system mimicking stomata in the epidermis of leaves harvested from nature is demonstrated. This device uses a light‐responsive composite consisting of 4‐amino‐1,1′‐azobenzene‐3,4′‐disulfonic acid monosodium salt (AZO) and poly(diallyldimethylammonium chloride) (PDDA) coated on a membrane with tens of nanometer‐size pores. The ionic current change through the pore channels as a function of pore size variation is then measured. The tran–cis isomerism of AZO–PDDA during light irradiation and the operation mechanism of photomechanical ion channel sensor are discussed and analyzed using UV–vis spectroscopy and atomic force microscopy analysis. It presents the discriminative current levels to the different light wavelengths. The response time of the photoreceptor is about 0.2 s and it consumes very low operating power (≈15 nW) at 0.1 V bias. In addition, it is found that the change of the pore diameter during the light irradiation is due to the photomechanical effect, which is capable of distinguishing light intensity and wavelength.  相似文献   
4.
Maleated poly(lactic acid) (PLA-g-MA) was prepared through melt grafting of maleic anhydride onto a PLA backbone with the aid of a radical initiator. PLA-g-MA thus formed was incorporated into PLA/polyamide 11 (PA11) blends as a reactive compatibilizer. By morphological observation, it was assessed that PLA-g-MA lowered the interfacial energy and strengthened the interface between PLA and PA11. However, the compatibilized PLA/PA11 blends did not show significant improvement of impact strength compared with noncompatibilized PLA/PA11 blends. Measurements of the molecular weight and impact strength of PLAs compounded with various amounts of radical initiators revealed that decreased molecular weight of PLA by the radical initiator used for the preparation of PLA-g-MA is responsible for this unexpected result. To compensate the decrease of the molecular weight, a crosslinking agent was incorporated in the preparation step of PLA-g-MA. It was found that the crosslinking agent is effective in preventing the molecular weight reduction. As a result, the impact strength of the PLA/PA11 blend was enhanced to a great extent by the PLA-g-MA prepared with the crosslinking agent.  相似文献   
5.
6.
Power generation characteristics of a sandwich‐type thermoelectric generator in which the heat source is embedded into thermoelectric elements are investigated. Our previous work on a similar concept only considered a uniform heat source distribution inside thermoelectric elements. In this work, the effect of the spatial distribution of a heat source is examined. In particular, the effect of the concentration of heat source near the one end, that is, the hot end, is intensively studied as a potential means of improving the efficiency of the device. Although the effects of heat source concentration in impractical cases without heat transfer limitations on the cold side remain ambiguous, it become clear that heat source concentration indeed has positive effects in more realistic cases with finite heat transfer coefficients imposed on the cold side. Because of the relatively low efficiency of typical thermoelectric generation, a significant amount of heat must be dissipated from the cold end of the thermoelectric element. Greater heat source concentration near the hot end leads to more effective utilization of available heat source, reduces the amount of heat rejected at the cold end, and lowers the hot end temperature of the thermoelectric element. Overall, it is suggested that heat source concentration can be used as a method to achieve more efficient operation and better structural integrity of the system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
7.
Son  Minjae  Jung  Seungwon  Jung  Seungmin  Hwang  Eenjun 《The Journal of supercomputing》2021,77(9):10463-10487
The Journal of Supercomputing - A class imbalance problem occurs when a dataset is decomposed into one majority class and one minority class. This problem is critical in the machine learning...  相似文献   
8.
Dense granule proteins (GRAs) are essential components in Toxoplasma gondii, which are suggested to be promising serodiagnostic markers in toxoplasmosis. In this study, we investigated the function of GRA9 in host response and the associated regulatory mechanism, which were unknown. We found that GRA9 interacts with NLR family pyrin domain containing 3 (NLRP3) involved in inflammation by forming the NLRP3 inflammasome. The C-terminal of GRA9 (GRA9C) is essential for GRA9–NLRP3 interaction by disrupting the NLRP3 inflammasome through blocking the binding of apoptotic speck-containing (ASC)-NLRP3. Notably, Q200 of GRA9C is essential for the interaction of NLRP3 and blocking the conjugation of ASC. Recombinant GRA9C (rGRA9C) showed an anti-inflammatory effect and the elimination of bacteria by converting M1 to M2 macrophages. In vivo, rGRA9C increased the anti-inflammatory and bactericidal effects and subsequent anti-septic activity in CLP- and E. coli- or P. aeruginosa-induced sepsis model mice by increasing M2 polarization. Taken together, our findings defined a role of T. gondii GRA9 associated with NLRP3 in host macrophages, suggesting its potential as a new candidate therapeutic agent for sepsis.  相似文献   
9.
Measurement of between ethylene–propylene rubber (EPR) and polypropylene (PP) is an important research subject in the study of rubber toughened PP. When the ethylene content in EPR is low, the EPR and the PP phases become optically indistinguishable due to their similar refractive indexes, and thus the measurements of interface free energy by conventional methods are impossible. In this study, we devised a new experimental technique that enables measurement of the interface free energy between two polymers having similar refractive indexes. When small amount of inorganic additives are incorporated to the PP phase, interface between PP and EPR phases are clearly seen and the measurements become attainable. Using the suggested method, the interface free energy between EPR and PPs were obtained and presented. Four different PPs were investigated, homo PP and three random PPs that contain small amounts of ethylene unit ranging from 1 to 3 wt%. It was found that the interface free energy decrease as the ethylene content in the PPs increases and the effect of the ethylene content on the interface free energy is unexpectedly large.  相似文献   
10.
Clathrate hydrates most often grow at the interface between liquid water and another fluid phase (hydrocarbon) acting as a provider for the hydrate guest molecules, and some transfer through this shell is required for the hydrate growth to proceed, thus self‐limiting the reaction rate. An optical microscope and a horizontal reaction cell are utilized to capture the shell growth phenomenology and to estimate the hydrate layer growth rates from sequential pictures. Cyclopentane (CP) is chosen as the hydrate‐forming molecule to obtain hydrates at low pressure. Experimental hydrate layer growth rates are provided for the CP+brine system, using various combinations of salts and degrees of subcooling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号