首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   4篇
  国内免费   2篇
综合类   1篇
金属工艺   7篇
矿业工程   1篇
一般工业技术   10篇
冶金工业   3篇
  2024年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
化学气相沉积TaC涂层的微观形貌及晶粒择优生长   总被引:1,自引:1,他引:0  
利用TaCl5-Ar-C3H6体系,采用X射线衍射技术和扫描电镜研究不同温度下化学气相沉积TaC涂层微观形貌及晶粒择优生长.结果表明:在800~1 200℃时,随沉积温度升高,TaC颗粒从圆球形逐渐转变为多角形以及金字塔形多面体,而其晶体择优取向依次从无明显择优取向向<220>和<200>转变;利用生长参数α和VAN DERDRIFT,MEAKIN的纳米级晶粒选择生长模型可较好地解释不同形貌的生长机制.当α=3时,薄膜会优先生长成<200>择优取向的金字塔晶粒;当α=1.5时,则容易生长成(220>取向的多角形晶粒.  相似文献   
2.
通过冷态输送ZrCl4粉末,利用低压化学气相沉积法在C/C复合材料表面制备ZrC涂层。采用X射线衍射和扫描电镜研究沉积温度和沉积位置对ZrC涂层物相成分和微观形貌的影响。结果表明:在1 400~1 600℃时,沉积涂层物相均为单一的ZrC。ZrC晶粒择优取向随沉积温度的升高而发生变化;在1 400和1 500℃时,ZrC晶粒择优取向面为(200);1 600℃时,晶粒择优取向面转变为(220)和(200),且择优不明显;随着沉积温度的进一步升高,涂层晶粒尺寸明显增大,涂层表面ZrC颗粒由球形逐渐转变为金字塔形多面体。在1 400~1 600℃沉积时,反应器的100~230mm沉积区间内可以得到成分单一、择优取向一致、表面形貌相同的ZrC涂层。  相似文献   
3.
采用并流化学共沉淀法合成了Dy_(2)O_(3)掺杂ZrO_(2)(DySZ)纳米粉体材料,系统研究稳定剂掺杂量、阳离子浓度、反应系统pH值和煅烧温度对粉体材料物相组成、晶体结构和微观形貌的影响。结果表明:不同合成工艺条件下,DySZ粉体材料均具有纳米尺度特征,球形颗粒尺寸为10~30 nm,Dy_(2)O_(3)的掺杂可以起到稳定晶型的作用;稳定剂掺杂量对DySZ粉体的物相组成具有明显影响,掺杂量为10%(质量分数)时可合成单一四方相结构的DySZ粉体;DySZ粉体材料的四方度和微观形貌对稳定剂掺杂量、阳离子浓度、反应体系pH值和煅烧温度均不敏感,但其平均晶粒尺寸随稳定剂掺杂量、阳离子浓度和反应体系pH值的升高略有降低,随煅烧温度的提高而显著增加。  相似文献   
4.
采用TiCl4-CH3SiCl3-H2-Ar反应体系,低压化学气相共沉积(LPCVD)Ti-Si-C三元体系涂层。采用XRD、SEM、EDS和EPMA分析在1 100~1 250℃不同温度下制备的涂层物相组成和形貌结构。结果表明:1 100℃时形成TiC涂层,无Ti3SiC2相;1 150~1250℃时形成TiC与Ti3SiC2复合涂层。当沉积温度为1 200℃时,Ti3SiC2晶粒沿?104?方向择优生长,而在1150℃和1 250℃沉积时,择优取向不明显。1150℃时涂层为多孔细柱和颗粒堆积嵌合结构,当温度为1 200~1250℃时,涂层分为两层,内层过渡层为柱状晶结构,主要成分为TiC;外层为TiC相与Ti3SiC2相复合的板条错堆状结构。  相似文献   
5.
以Mo、Si和SiC粉末为原料,利用放电等离子烧结技术在不同温度下制备SiC/MoSi_2复合材料,研究SiC/MoSi_2复合材料的物相组成、显微组织和力学性能,并探讨其烧结行为。结果表明:SiC/MoSi_2复合材料由MoSi_2、SiC和少量的Mo_(4.8)Si_3C_(0.6)组成,呈现细晶组织。在Si C/MoSi_2复合材料的烧结过程中,存在固相烧结至液相烧结的演变。1600°C烧结的Si C/MoSi_2复合材料表现出最好的力学性能,其维氏硬度、抗弯强度、断裂韧性分别为13.4 GPa、674 MPa和5.1 MPa·m~(1/2),比纯MoSi_2分别提高了44%、171%和82%。第二相SiC作为硬质相可以承受外加应力,并阻碍裂纹的快速扩展,有助于复合材料力学性能的提高。  相似文献   
6.
采用化学共沉淀煅烧法制备不同La2O3掺杂量的La2O3-Y2O3-ZrO2(YSZ)复合陶瓷粉末,研究该复合陶瓷粉末的高温相稳定性、抗烧结性及热物理性能,并与传统应用的YSZ陶瓷粉末进行对比,以探讨La2O3-YSZ作为热障涂层材料应用的可能性。采用XRD分析陶瓷粉末的晶体结构和物相组成,研究La2O3掺杂量对YSZ高温相稳定性的影响。采用SEM观察陶瓷烧结体的微观形貌,研究La2O3掺杂对YSZ抗烧结性的影响。采用激光脉冲法测定热扩散率,通过计算得到材料的热导率。结果表明:YSZ和不同La2O3掺杂量的La2O3-YSZ均由单一的非平衡四方相ZrO2(t′-ZrO2)组成。经1 400℃热处理100h后,YSZ中t′-ZrO2完全转变为立方相ZrO2(c-ZrO2)和单斜相ZrO2(m-ZrO2),在0.4mol%~1.4mol%La2O3掺杂范围内,La2O3-YSZ的相稳定性均优于YSZ,其中1.0mol%La2O3掺杂的YSZ(1.0mol%La2O3-YSZ)经热处理后无m-ZrO2生成,表现出良好的高温相稳定性。此外,1.0mol%La2O3-YSZ较YSZ具有较高的抗烧结性和较低的热导率。在室温至700℃范围内,1.0mol%La2O3-YSZ的热导率为1.90~2.17 W/(m·K),明显低于YSZ的热导率(2.13~2.33 W/(m·K))。  相似文献   
7.
针对超声电机非线性、时变性的特点,设计了模糊自整定PID控制器,并利用量子遗传算法对模糊自整定PID控制器参数进行优化,以提高系统的动态性能和适应性.针对传统量子遗传算法的不足,对编码方式、种群初始化、量子旋转门、量子变异以及增加量子灾变5个方面进行改进.仿真结果表明:改进量子遗传算法改善了传统量子遗传算法容易产生种群早熟的问题,提高了算法收敛性能.同时,基于改进量子遗传算法的模糊自整定PID控制器与经典的模糊自整定PID控制器相比,明显提高了超声电机系统的动态和稳态性能.  相似文献   
8.
以Mo、Si混合粉末为原料,采用放电等离子烧结技术原位制备MoSi_2陶瓷。利用X射线衍射仪、扫描电镜、维氏硬度计、电子万能材料试验机等,研究1 300,1 400和1 500℃下烧结的MoSi_2陶瓷物相组成、微观结构及力学性能。结果表明:MoSi_2陶瓷由MoSi_2和少量Mo_5Si_3/Mo_(4.8)Si_3C_(0.6)及SiO_2组成;随烧结温度升高,第二相Mo_5Si_3/Mo_(4.8)Si_3C_(0.6)含量增多,并发生Mo_5Si_3向Mo_(4.8)Si_3C_(0.6)的相转变;第二相Mo_5Si_3/Mo_(4.8)Si_3C_(0.6)含量增多可细化基体组织,材料沿晶断裂的比例增加,具有一定的强韧化作用;1 500℃烧结的MoSi_2陶瓷综合性能最佳,其致密度为99.5%,维氏硬度为9.8 GPa,抗弯强度和断裂韧性分别为313 MPa和2.9 MPa·m~(1/2)。  相似文献   
9.
薄层化碳布缝合碳/碳复合材料制备与性能   总被引:1,自引:0,他引:1       下载免费PDF全文
为获得高性能、低成本碳/碳复合材料,以商用级T700大丝束薄层化碳纤维展宽平纹布和航空航天级T300小丝束碳纤维缎纹布为原材料制备缝合预制体,采用化学气相沉积工艺方法制备了一系列缝合碳/碳复合材料,对材料的气相致密化特征、微观结构特征和力学性能进行了测试与分析。研究结果表明,碳布规格和缝合间距对材料气相致密化效果和力学性能有较大影响。当选用T700-12 K、展宽16 mm大丝束纤维编织的面密度100 g/m2的平纹布为原材料且预制体缝合间距为5 mm×5 mm时,制备的密度为1.781 g/cm3薄层化碳布缝合碳/碳复合材料表现出良好的气相沉积工艺适应性和优异的力学性能,材料拉伸强度、压缩强度、弯曲强度和层间剪切强度高达342.9 MPa、285.5 MPa、328.4 MPa和15.2 MPa。通过商用级大丝束薄层化碳纤维的应用,大幅降低了高性能碳/碳复合材料的原材料成本,且制备的碳/碳复合材料性能达到了国际先进水平。   相似文献   
10.
采用全长纤维针刺结构预制体,利用反应熔渗法制备了C/C-SiC复合材料,系统研究了复合材料的微观结构、弯曲性能和热扩散性能。结果表明,熔渗温度1 650~1 850 ℃条件下均可得到致密的C/C-SiC复合材料,提高熔渗温度可促进Si-C反应,降低残余Si含量。C/C-SiC复合材料的弯曲强度随熔渗温度升高而增大,且断裂模式表现出明显的假塑性,1 750 ℃制备的复合材料弯曲强度可达229±17 MPa。C/C-SiC复合材料面内方向热扩散系数明显高于层间方向,SiC含量的增加及非均质孔隙的存在均可促进复合材料的热扩散能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号