首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
机械仪表   10篇
  2020年   5篇
  2019年   5篇
排序方式: 共有10条查询结果,搜索用时 187 毫秒
1
1.
油封唇口温度变化对密封性能的影响   总被引:1,自引:0,他引:1  
基于流量因子统计学方法建立油封唇口的混合流体润滑模型,耦合油封的能量守恒方程及黏温方程,通过迭代求解获得油封唇口的温度分布、不同转速下油封唇口的最高温度及温差变化情况;对比分析考虑和不考虑温差情况下油封各项密封性能。结果表明:随着转速的增大,唇口最高温度线性递增,而唇口温差先增大后减小;油封工作时,唇口区域的温度先迅速升高后下降,越靠近唇尖的位置温度越高;与不考虑温度的情况比较,考虑温度变化的影响时密封区域的油膜厚度减小,油膜承载力下降,不利于密封。  相似文献   
2.
针对目前胶筒的结构易失效和可靠性低等问题,以胶筒的抗剪失效为目标,基于安全系数法,引入设计变量的随机性,建立正态分布下胶筒的可靠性模型。对胶筒工作应力和强度的影响因素进行分析,基于相邻目标优属度的AHP方法,综合获得可靠性模型的相关参数值;对密封胶筒静强度可靠性要求下的可靠性安全系数进行计算,并给出不同层次下密封胶筒可靠性安全系数的参考值。建立胶筒的有限元分析模型,根据剪切应力评价准则计算了胶筒可靠性安全系数的取值范围,并通过实例验证理论计算结果的合理性。  相似文献   
3.
表面纹理对旋转轴唇形密封性能的影响   总被引:1,自引:0,他引:1  
在唇形密封圈唇端两侧设置整齐排列的圆形、正方形和等边三角形3种凹坑纹理形式,建立具有表面纹理的旋转轴唇形密封圈的有限元模型,并分析获得密封面静态接触压力和变形系数矩阵;建立综合考虑混合润滑和空化及表面纹理形状影响、耦合流体场和弹性变形场的唇形密封圈接触区域密封数值计算模型,并建立集有限元分析与数值计算于一体的唇形密封圈接触区域泵吸率计算流程。计算结果表明:表面纹理结构使得密封唇与轴的接触压力相对下降,且有效地增大唇形密封圈的膜厚并改善泵吸效果;相较于圆形和正方形纹理,三角形纹理对唇形密封圈的改善效果最佳。但表面纹理结构在改善密封区域润滑状态的同时,也造成密封动态压力的波动,且三角形纹理的影响更显著。  相似文献   
4.
利用有限元分析软件模拟分析双唇油封主唇区域的静态接触压力分布,并与单唇油封的静态接触压力进行比较;同时分析双唇油封安装后副唇的位移和变形。结果表明:油封的腰部结构不同导致双唇油封主唇区域密封效果低于单唇油封;副唇的位移和变形导致在实际运行中副唇与旋转轴存在空隙,影响防尘效果。为改善双唇油封的性能,提出采用渐进式腰部结构代替原弓形腰部结构和采用较长的防尘唇的双唇型油封结构优化方案。结果表明:采用渐进式腰部结构的双唇油封的主唇口接触压力曲线更接近单唇油封,密封效果优于普通双唇油封;采用较长的防尘唇,且安装时使防尘唇与旋转轴之间具有一定的过盈量,可以使防尘唇在油封装配变形后仍保持与旋转轴接触,减少了防尘唇唇尖与旋转轴之间的空隙,能够有效地提升防尘效果。  相似文献   
5.
利用ABAQUS软件建立了封隔器胶筒的有限元模型,分析了密封载荷为58.15 MPa时,温度变化对胶筒与套管之间的接触应力的影响规律。考虑实际工况中井下作业温度变化的情况,分析了升温和降温两种变化情况下胶筒的整体密封性能。利用ABAQUS与FE-SAFE疲劳分析软件联立求解,分析温度变化对胶筒使用寿命的影响。研究结果表明,密封载荷不变时,作业温度稳定不变且为100℃左右时胶筒的密封性能最好;作业温度由低向高变化时,胶筒的整体密封性能随之提高,密封性能系数增大;反之,当作业温度由高向低变化时,胶筒的整体密封性能随之降低,密封性能系数减小。当作业初始温度50℃升至100℃时胶筒的整体密封性能达到最好,此时密封性能系数达到最大值4 564.7 MPa·mm;当作业初始温度100℃降温至50℃时胶筒的整体密封性能最差,此时密封性能系数达到最小值572.7 MPa·mm。温度变化幅度越小,胶筒的疲劳寿命波动范围越小;当温度变化幅度一定时,作业温度的升高可延长胶筒的疲劳寿命,当初始温度为100℃时,胶筒的疲劳寿命可达到最大值66.10 d。无论是升温还是降温,当温度变化幅度超过30℃时,均会导致胶筒失效。  相似文献   
6.
胶筒密封的失效会给石油开采工艺带来难以估量的损失。在获取用户对密封胶筒可靠性需求的基础上,通过二元比较和多粒度粗糙集集成的方法计算用户需求的耦合权重,应用产品规划质量屋(Quality Function Deployment,QFD)将用户需求转换为技术特性,最终识别出影响胶筒密封可靠性的关键因素并确定其重要度,运用模糊聚类分析将胶筒密封可靠性影响因素进行归类。最后,应用TRIZ理论对胶筒进行创新设计。该文对于研究提高胶筒密封可靠性的措施和对胶筒进行可靠性设计具有重要意义。  相似文献   
7.
建立封隔器胶筒的有限元分析模型,模拟胶筒的变形过程,对氢化丁腈橡胶(HNBR)胶筒在自由变形与约束变形阶段的稳定性进行分析。分析不同高径比下,HNBR、丁腈橡胶(NBR)、氟橡胶(FKM)和聚氨酯橡胶(PU)4种材料在自由变形阶段所需要的使胶筒与套管刚好接触的最小载荷,以及约束变形阶段使胶筒变形从不稳定到稳定所需稳定载荷值。结果表明:高径比与材料的差异会使胶筒在自由与约束变形阶段出现稳定变形与不稳定变形两种分化现象;不同的高径比下,材料差异对自由变形阶段所需的最小载荷及约束变形阶段所需载荷的变化趋势影响不明显,但对载荷值有显著影响;4种材料中,PU材料对自由变形阶段所需要的使胶筒与套管刚好接触的最小载荷,及约束变形阶段使胶筒变形从不稳定到稳定变形所需载荷值最高,然后依次是HNBR、NBR和FKM。HNBR与NBR在高径比小于1.234,FKM与PU在高径比小于1.225时,不会出现胶筒不稳定变形的情况。  相似文献   
8.
利用有限元分析软件建立某压缩式封隔器胶筒的二维模型,分析53.85 MPa轴向载荷作用下,胶筒的端面倾斜角、胶筒子厚度、筒高和摩擦因数对胶筒与套管之间最大接触应力的影响。结果表明:最大接触应力随端面角的增加呈W形分布,随子厚度的增加先增大后减小最后趋于稳定,随胶筒筒高的的增大而减小,随摩擦因数的增大先缓慢减小后急剧增大;端面角为45°,胶筒子厚度取9 mm,筒高介于80~120 mm,摩擦因数在0.1~0.3范围内时,研究的封隔器的胶筒与套管之间最大接触应力较高,胶筒的密封性能较好。基于有限元分析结果,设计响应曲面法实验,研究多因子不同水平下胶筒最大接触压力响应的变化情况。结果表明:对最大接触应力影响最大的因子是摩擦因数,最小的是筒高,交互项端面倾斜角和筒高、端面倾斜角和摩擦因数、胶筒子厚度和擦因数、筒高和摩擦因数对响应具有显著性影响;胶筒密封性能最佳的因子组合方案为端面倾斜角为48.2°、子厚度为9 mm、筒高为90 mm、摩擦因数为0.1。  相似文献   
9.
利用ABAQUS分析软件建立封隔器胶筒的有限元模型,分析相同工作载荷及不同工作温度下,胶筒与套管间接触应力及其沿轴向的分布规律;分析升温和降温2种情况下温度对胶筒密封性能的影响,以及考虑胶筒发生扭转时温度对密封性能的影响。结果表明:轴向载荷不变时,随着温度的升高,胶筒的密封性能也随之提高;升温时,除起始温度低于0℃以外,其各温度下升温的温差幅度越大,胶筒的最大接触应力增加幅度越大,胶筒的密封效果越好;降温时,降温的温差幅度越大,胶筒的最大接触应力减小的幅度越大,胶筒的密封性能越差;小角度扭转载荷下,作业温度的升高将提高胶筒的密封性能,但会降低胶筒密封的稳定性。  相似文献   
10.
探讨胶筒密封的可靠性及其评价方法,利用ABAQUS分析软件建立某封隔器胶筒的有限元模型,分析工作载荷为58.15 MPa时,温度变化(25~100℃)对胶筒的密封可靠性、弹性变形可靠性和损伤可靠性的影响,分析温度和扭转载荷对胶筒损伤可靠性的影响。结果表明:轴向载荷不变时,随着温度的升高,胶筒的密封可靠性、压缩永久变形率和回弹极限逐渐增加,胶筒的使用寿命也随温度的增加而提高,在100℃下密封性能系数达到2 297.8 MPa·mm,回弹极限达到27.27 mm,使用寿命达到约67天;随着温度的升高,胶筒发生疲劳的部位从下端向上端转移;扭转载荷将降低胶筒的使用寿命,温度越低扭转载荷越大,使用寿命降低越明显。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号