首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   4篇
  国内免费   1篇
综合类   1篇
金属工艺   3篇
机械仪表   6篇
  2024年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2016年   2篇
  2013年   1篇
排序方式: 共有10条查询结果,搜索用时 156 毫秒
1
1.
为了实现齿轮端面及其棱边的高效一次加工,结合新型开式砂带磨削的方案和特点,设计了一种适用于齿轮端面的砂带磨削装置。该系统既有砂带磨削的柔性和适应性广的特点,又能通过磨削参数的调节实现端面棱边微小倒棱尺寸的精确控制。磨削系统采用了接触轮的往复振动方式,能够改善砂带表面磨料等高性。最后通过磨削试验探索得到最佳表面质量和倒棱尺寸的磨削参数,表面粗糙度能够维持在0.05μm以下,棱边不同位置微小倒棱尺寸能够满足给定的尺寸范围,也验证了该系统进行高精度磨削的有效性和稳定性。  相似文献   
2.
针对TiAl基合金塑性低、脆性大、表面可加工性差等问题,采用正交试验对TiAl基合金的砂带磨削表面完整性进行研究。总结归纳TiAl基合金砂带磨削材料去除率和表面质量的影响因素,通过灰色关联法得到正交试验的最优工艺参数为A3B3C2D2。采用最优工艺参数对TiAl基合金进行砂带磨削,分析TiAl基合金砂带磨削磨粒磨损过程,对磨削前后工件的表面形貌进行分析。结果表明砂带磨削对TiAl基合金的磨削加工效果好,可用于TiAl基合金表面的精密加工。本文研究为TiAl基合金表面精密加工提供了新的加工方法。  相似文献   
3.
金刚石砂带精密磨削航空发动机钛合金叶片时,砂带磨损对加工精度及表面质量一致性影响很大。针对这一问题,利用ABAQUS软件开展单颗磨粒磨削过程仿真研究,进而进行航发钛合金叶片金刚石砂带磨削试验。仿真及试验结果表明:在磨削速度为10~20 m/s时,摩擦接触点的温度达700 K以上,且随磨削速度的增大而升高;砂带磨损程度随磨削速度的增大而升高,与磨削速度对摩擦接触点磨削温度的影响规律一致。M10/20金刚石砂带的磨损形式为磨粒损耗和磨粒脱落,磨屑的黏结加剧了砂带的磨损。   相似文献   
4.
为了降低黑色金属金刚石切削过程中的刀具磨损,提高表面加工质量和精度,对刀具磨损机理进行了研究.通过黑色金属金刚石摩擦磨损试验,模拟了实际切削过程中的刀具磨损行为;分别采用扫描电镜(SEM) 、X射线能谱仪(EDS)以及拉曼光谱仪(RS)对工件表面形貌、实验前后工件表面化学组分变化以及金刚石磨损表面的晶体结构转变进行了检测,同时提出了用石墨化程度作为试验过程中评价金刚石磨损的指标.试验结果表明:金刚石的磨损主要与机械力和温度有关,摩擦速度和工件材料中的含碳量对其影响相对较小;石墨化磨损、扩散磨损和氧化磨损等磨损机理共存,其中石墨化为导致金刚石磨损的主要原因.结合红外热像仪测温和热传导理论推算,近似获得了摩擦界面的真实温度,且随着温度升高15%,金刚石石墨化程度显著加剧83%.作者提出,应当综合考虑热-力耦合作用下的刀具磨损机理,以便进一步探寻抑制刀具磨损的工艺措施.  相似文献   
5.
目的 金字塔砂带连续磨损会引发钝峰、材料去除能力差和产热多等问题,为避免砂带磨损造成加工效率持续降低和工件表面质量逐渐恶化,需提高金字塔砂带磨损预测能力。方法 在配有声音采集系统的力控机器人磨削系统中对钛合金工件进行了砂带磨损试验;基于Archard模型建立了金字塔砂带磨损模型,并对金字塔砂带磨损程度进行量化;然后利用短时傅里叶和小波包分解分析、提取砂带磨损相关的声音特征;基于声音信号特征建立GA-BP模型,并对金字塔砂带磨损状态进行预测。结果 Kr与R0规律相近,随着磨削速度的增大而略微增大。对磨削声音进行小波包分解,DD2频段的声音特征随磨削时间逐渐降低,相较于其他频段更具有规律性。提取DD2频段的声音信号特征建立GA-BP模型,并对金字塔砂带磨损状态进行预测。结果表明,决定系数(R2)大于0.8,平均绝对误差(MAE)小于0.04,平均偏差误差(MBE)在±0.002之间,均方误差(RMSE)小于0.05。结论 随着砂带的磨损,金字塔尖锐的胞体开始磨平,单颗胞体的局部压力逐渐减小,材料去除能力减弱,产生的微振荡越来越弱,高频信号的声音特征逐渐下降。通过DD2频段声音信号特征建立的GA-BP模型对金字塔砂带磨损状态进行预测,具有准确性和稳定性。  相似文献   
6.
为了解决航空发动机钛合金叶片磨削加工中砂带使用寿命不足的问题,采用新型氧化铝空心球开展钛合金试样砂带磨削的相关工艺试验研究。通过单因素试验分析氧化铝空心球砂带加工钛合金板材中工艺参数对表面粗糙度和磨削比的影响,确定空心球砂带磨削钛合金参数的合理范围,进而通过正交试验研究磨削压力、磨削线速度、进给速度以及磨粒粒度等因素对表面粗糙度和磨削比的影响程度,确定空心球砂带磨削钛合金的最优工艺参数组合。  相似文献   
7.
航空发动机叶片的材料多为钛合金,该类材料强度和机械性能良好,但加工性能差,而模锻、精铣后的叶片型面精度和表面质量需要加工来满足航空发动机的要求。通过三坐标测量仪最佳拟合法检测模锻叶片,确定叶片型面加工余量,再采用自适应砂带磨削方式对航发模锻叶片材料定量去除。结果表明:磨削加工能精准去除模锻叶片表面的加工余量,保证叶片进排气边的圆弧过渡,且叶片表面粗糙度Ra值均在0.4 μm以下。   相似文献   
8.
We numerically simulated and experimentally studied the interfacial carbon diffusion between diamond tool and workpiece materials. A diffusion model with respect to carbon atoms of diamond tool penetrating into chips and machined surface was established. The numerical simulation results of the diffusion process reveal that the distribution laws of carbon atoms concentration have a close relationship with the diffusion distance, the diffusion time, and the original carbon concentration of the work material. In addition, diamond face cutting tests of die steels with different carbon content are conducted at different depth of cuts and feed rates to verify the previous simulation results. The micro-morphology of the chips is detected by scanning electron microscopy. Energy dispersive X-ray analysis was proposed to investigate the change in carbon content of the chips surface. The experimental results of this work are of benefit to a better understanding on the diffusion wear mechanism in single crystal diamond cutting of ferrous metals. Moreover, the experimental results show that the diffusion wear of diamond could be reduced markedly by applying ultrasonic vibration to the cutting tool compared with conventional turning.  相似文献   
9.
采用机器人夹持GH4169镍基高温合金来进行砂带磨削试验。对试验装置进行了设计和分析,以确保砂带磨削过程中的磨削压力稳定;采用正交试验获得砂带磨削GH4169时的磨削深度;采用单因素试验确定砂带线速度和磨削压力对GH4169表面完整性的影响规律。试验结果表明:采用粒度为80号的陶瓷磨粒砂带加工GH4169时,其表面粗糙度在0.6~0.7 μm范围内,且随着砂带线速度的增大而减小,随着磨削压力的增大而增大,表面硬度在430~485HV范围内,表面残余应力均为残余压应力,其值在-410~ -60 MPa范围内。  相似文献   
10.
基于对铝合金轮毂结构及光整加工要求的分析,通过比较机器人示教和离线编程的优缺点,提出示教编程和离线编程集成使用的机器人控制技术,来完成轮毂光整加工。机器人离线编程控制是根据轮辐表面刀具轨迹的点位信息和机器人运动学方程,运用Pieper法进行机器人运动学方程逆解来实现的。研究表明,采用示教编程和离线编程集成的机器人控制技术能在满足光整加工要求的前提下大大提高轮毂加工效率。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号