首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   5篇
金属工艺   5篇
机械仪表   16篇
矿业工程   2篇
石油天然气   3篇
冶金工业   1篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
2.
针对气动油雾器产品质量监督抽查和委托检测的结果,从行业标准入手简要介绍了油雾器的主要性能指标和测试方法 ,指出了主要存在的不合格项目。为解决压力降-空气流量性能不合格问题,在对油雾器进行结构分析的基础上,提出在不改变阻尼板材料和结构前提下,采用增加流通面积以增大流量的简单方法。并以某型号油雾器为例验证了方法的可行性和有效性。最后对油雾器行业标准的修订提出了几点建议。  相似文献   
3.
正本文以煤化工严苛工况阀门内多相流冲蚀磨损-气蚀失效为研究对象,明确了复杂流动条件下阀内件的失效机理及损伤过程,并建立含气液相变的多相流冲蚀磨损-气蚀预测方法。通过工艺过程、运行状态分析、受损表面微观形貌测试,基本明确了热高分液控阀和高压黑水角阀的失效机理;通过阀门空化-空蚀试验和高温冲蚀磨损试验,研究阀门气蚀和冲蚀磨损机理,并对空化模型和颗粒冲蚀磨损模型进行修正;构建了含气液相变的多相流冲蚀磨损-气蚀数学模型,并提出阀内流动  相似文献   
4.
为有效提高气缸气密性的检测精度和检测效率,该文在充分考虑设备便利性、硬件稳定性和软件可靠性的基础上,设计研发出一套气缸气密性检测系统。系统的硬件主体设计包括工作台、检测仪和人机界面模块,系统软件主要包括工作台和检测仪主控PLC的设计和人机交互模块的设计。经现场实验验证,结果表明,该检测台软件和硬件运行可靠,在保证检测精度的同时取得了较满意的检测效率:可将缸径φ20-φ100气缸检测时间缩短至60s/只以内,可满足使用需求。  相似文献   
5.
采用高温高压液控阀的实际操作条件和介质的物性参数,基于两相空化流动的控制方程和RNG k-ε湍流模型,对液控阀的空化和空蚀特性进行数值分析。结果表明:流体在流经阀座和阀芯之间的间隙时,流速急剧增加,压力迅速降低至液体的饱和蒸汽压以下,形成空化。由于阀芯出口处的突扩结构,流速急剧降低,产生分离现象,从而在下游出现回流区,回流区域会形成空化带。并且,当操作温度升高和入口压力增加均会导致空化的区域增大、强度增加。数值模拟结果与阀芯的实际失效形貌基本吻合,证明该方法可成功应用于阀门的空化和空蚀预测。  相似文献   
6.
针对中东高硫原油加工过程中易引发加氢空冷系统失效的现状,通过分析加氢裂化工艺过程、失效机理与典型案例,提出了加氢反应流出物空冷器系统的失效预测研究体系,并介绍了加氢装置空冷系统可靠运行的闭环管理思路.  相似文献   
7.
空蚀机理的研究综述   总被引:1,自引:0,他引:1  
空蚀损伤是在液压系统中广泛存在的失效形式,研究空泡溃灭过程中产生的物理、化学效应向固壁的传递和作用过程,以及壁面材料的响应及失效过程,对提高设备的抗空蚀性能及优化设计,具有重要的意义.该文重点对空泡溃灭的数值模拟、试验研究及作用机制进行阐述,在对文献进行归纳总结的基础上,指出针对空泡群溃灭的空间效应和时间效应,进行多种机制的非线性耦合作用研究,基于流固耦合思想的材料损伤动态过程研究,材料局部损伤导致的自催化效应研究以及广泛条件下空蚀临界特性表征及预测方法研究,将是未来重要的发展方向.  相似文献   
8.
通过对国内外某典型的气动电磁阀进行寿命试验,对其故障数据进行深入分析,计算可靠性评估指标,找出其可靠性指标的差异,分析产生差异的原因,提出提高可靠性的对策,为提高气动电磁阀可靠性水平提供参考。  相似文献   
9.
该文通过对真空发生器工作原理和主要性能参数的分析,设计组装了检测真空发生器主要性能参数检测台,使用精密传感器数据采集系统进行采集,通过控制模块在电脑上能准确的读取显示,并绘制出真空发生器的排气特性和真空度—吸入流量特性曲线,更好地为产品性能的提升提供科学合理的检测数据。  相似文献   
10.
采用Fluent软件中的Mixture模型和标准湍流模型,对加氢空冷器入口管道系统孔板式静态混合器的混合效果及其影响因素进行了数值分析。结果表明:多相流在流经静态混合器时,会形成反向的涡流,增强流体径向间的扩散。在现场实际工况下,混合效果的持续距离约为5.8 m。当流速处于2~4 m/s内,提高流速,混合效果明显增强。当流速高于6 m/s时,混合器的有效作用距离趋于稳定,对流速的变化不再敏感;当静态混合器的长径比为3.04、混合器管径与孔板直径的比值约为3.83、孔板倒角为45°时,混合效果最佳。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号