首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   6篇
综合类   4篇
建筑科学   13篇
一般工业技术   9篇
  2021年   7篇
  2020年   6篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2014年   1篇
排序方式: 共有26条查询结果,搜索用时 224 毫秒
1.
等效实膜筒法较适合预估低烈度区钢框筒结构的构件尺寸,但当设防烈度较高时,预估出的构件尺寸偏小,需多次调整方可满足规范要求。针对该问题,提出了基于多遇地震作用下最大层间位移角与风荷载下最大层间位移角相等时多遇地震作用的相当风压概念,建议求顶点侧移时取相当风压与基本风压的较大值,可用《建筑抗震设计规范》中底部剪力法计算基底剪力的公式来估计相当风压下的基底剪力,通过多种影响因素分析验证了其可行性;此外在对多个钢框筒算例分析的基础上建议用等效实膜筒法时风荷载下的顶点侧移角限值可保守取1/450;最后用一个30层钢框筒算例验证了改进方法的有效性。改进后的等效实膜筒法对处于不同抗震设防区的钢框筒结构的构件尺寸预估均有较好的适用性。  相似文献   
2.
为了改善传统钢框筒结构抗震性能较差的问题,提出了带端板螺栓连接可更换剪切型耗能梁段的高强钢框筒结构(HSS-FTS-RSLs).考虑耗能梁段长度和楼板的影响,设计了 3个2/3比例的单层单跨HSS-FTS-RSLs子结构试件,对这3个试件进行低周往复加载试验并进行耗能梁段的更换,研究HSS-FTS-RSLs的抗震性能和震后可更换能力.试验结果表明:带端板螺栓连接的子结构试件在地震作用下滞回曲线饱满,损伤主要集中于耗能梁段,具有良好的抗震性能;更换耗能梁段后不会影响结构的刚度和承载力以及连接处的传力性能,结构的可更换允许残余层间侧移为0.40%;楼板可以使结构的弹性刚度和承载力分别提高7.40%和5.21%,楼板损伤主要集中在耗能梁段与裙梁连接区域上方;剪切型耗能梁段在循环荷载作用下超强系数为1.63~1.81,最大塑性转角可达到0.15~0.21rad,呈现出良好的超强和变形能力;耗能梁段长度比e/(Mp/Vp)(其中e为耗能梁段长度,Mp、Vp分别为耗能梁段的塑性受弯承载力和塑性受剪承载力)越小,结构的刚度和承载力越高,耗能梁段的变形能力越强.  相似文献   
3.
为了改善传统钢框筒结构抗震性能较差的问题,提出了带端板螺栓连接可更换剪切型耗能梁段的高强钢框筒结构(HSS-FTS-RSLs).考虑耗能梁段长度和楼板的影响,设计了 3个2/3比例的单层单跨HSS-FTS-RSLs子结构试件,对这3个试件进行低周往复加载试验并进行耗能梁段的更换,研究HSS-FTS-RSLs的抗震性能和震后可更换能力.试验结果表明:带端板螺栓连接的子结构试件在地震作用下滞回曲线饱满,损伤主要集中于耗能梁段,具有良好的抗震性能;更换耗能梁段后不会影响结构的刚度和承载力以及连接处的传力性能,结构的可更换允许残余层间侧移为0.40%;楼板可以使结构的弹性刚度和承载力分别提高7.40%和5.21%,楼板损伤主要集中在耗能梁段与裙梁连接区域上方;剪切型耗能梁段在循环荷载作用下超强系数为1.63~1.81,最大塑性转角可达到0.15~0.21rad,呈现出良好的超强和变形能力;耗能梁段长度比e/(Mp/Vp)(其中e为耗能梁段长度,Mp、Vp分别为耗能梁段的塑性受弯承载力和塑性受剪承载力)越小,结构的刚度和承载力越高,耗能梁段的变形能力越强.  相似文献   
4.
在Y形偏心支撑高强钢框架结构抗震性振动台试验的基础上,建立了试验试件的有限元模型,并验证了分析的正确性。设计了一个9层的Y形偏心支撑高强钢框架结构,以耗能梁段长度、耗能梁段腹板高厚比、高跨比为参数,对9层结构进行了非线性动力时程分析,研究了以上参数对结构抗震性能的影响。研究结果表明,改变耗能梁段长度、高跨比对结构层间侧移、耗能梁段性能、框架柱弯矩、耗能能力均有不同程度的影响,对框架柱轴力、基底剪力无显著影响;改变耗能梁段腹板高厚比对结构耗能能力有影响,对结构层间侧移、耗能梁段性能、框架柱受力、基底剪力无显著影响,并给出了相关设计建议。  相似文献   
5.
针对传统钢框筒结构耗能能力不足及强震作用后结构修复难度大等问题,提出一种震后可快速恢复功能的可更换剪切型耗能梁段-高强钢框筒结构(HSS-FTS)。为研究该结构的滞回性能,采用ABAQUS建立了单层单跨HSS-FTS足尺结构有限元模型并对其进行非线性滞回分析,以耗能梁段的长度、加劲肋间距、翼缘宽厚比和腹板高厚比为参数,通过分析模型的承载力、刚度、延性和耗能等,研究以上参数对结构滞回性能的影响规律。结果表明:改变耗能梁段长度对结构承载力、刚度、延性和耗能能力影响较为显著;耗能梁段加劲肋间距满足现行抗规要求时,改变耗能梁段加劲肋间对结构滞回性能影响不大;当耗能梁段翼缘宽厚比减小时,结构的承载力、刚度和耗能能力略有增强,但对结构的延性影响较小;当腹板高厚比减小时,结构的承载力、刚度和耗能能力显著提高。在满足结构设计要求的前提下,为保证结构具有良好的滞回性能,基于本文的分析结果,建议耗能梁段长度取(0. 60~0. 87) Mp/Vp;耗能梁段加劲肋间距需满足抗规要求;耗能梁段翼缘宽厚比取4. 7~6. 7;耗能梁段腹板高厚比取21. 6~30. 2。  相似文献   
6.
程倩倩  苏明周  连鸣 《工程力学》2020,37(2):145-158
针对传统钢框筒结构耗能能力差和震后修复困难的问题,提出了一种新型钢框筒结构体系-带可更换剪切型耗能梁段的高强钢组合框筒结构(HSS-SFT)。为研究HSS-SFT的结构影响系数,设计了8个具有理想屈服模式的HSS-SFT结构。考虑高阶振型的影响,采用分步侧向力调整法得到结构的性能曲线,基于改进的能力谱法分析了楼层总数和耗能梁段长度对结构影响系数R和位移放大系数Cd的影响。研究结果表明: HSS-SFT在弹塑性阶段,由于内力重分布,结构呈现出较高的超强能力和延性能力;随着结构层数的增加,R呈减小趋势,Cd无显著变化规律,随着耗能梁段长度的增加,R和Cd略微增大;建议HSS-SFT设计地震作用下的R为3.65,结构超强系数RΩ为2.92,罕遇地震作用下的Cd为7.45,设计基底剪力可比现行抗震规范规定的小震基底剪力降低30%;HSS-SFT可以保证结构在罕遇地震作用下呈现理想的破坏模式,有效地改善传统钢框筒结构耗能能力差和震后修复困难的问题。  相似文献   
7.
高强钢组合K型偏心支撑框架耗能梁段长度研究   总被引:1,自引:0,他引:1  
建立了多个耗能梁段长度不同的高强钢组合K型偏心支撑框架有限元模型,对其滞回性能进行了非线性数值分析,研究了耗能梁段长度对高强钢组合K型偏心支撑框架承载力、强度退化、刚度退化、延性和耗能能力的影响规律.结果表明:耗能梁段长度不同,相应的高强钢组合K型偏心支撑框架抗震性能差异较大.最后,结合承载力、强度、刚度、延性及耗能能力,给出了高强钢组合K型偏心支撑框架相关设计建议,为工程设计提供参考.  相似文献   
8.
为研究Y形偏心支撑-高强钢框架结构抗震性能,在已完成的1∶2缩尺3层模型结构振动台试验的基础上,重新设计了耗能梁段,并对该结构再次进行振动台试验。试验中选取El Centro波、Taft波和兰州波作为地震动输入并考虑7度多遇到9度罕遇的地震水准,分析了结构在水平地震作用下的动力特性、加速度响应、位移响应、应变响应、剪力分布等,并与已有试验结果进行了对比。通过ABAQUS建立了有限元分析模型,与试验结果进行对比。结果表明:该结构在多遇地震作用下处于弹性状态,在罕遇地震作用下表现为耗能梁段的局部破坏;耗能梁段破坏后,结构刚度大幅下降,但未发生倒塌;在多遇地震和罕遇地震作用下,结构的最大层间位移角满足抗震规范层间位移角限值的相关要求;在罕遇地震作用下,耗能梁段进入塑性状态而进行耗能,其他构件仍保持弹性状态;所建立的有限元模型可以有效模拟振动台试验结果。  相似文献   
9.
为研究带可更换低屈服点耗能梁段 端板连接的钢框筒结构(SFTS-RSLs)抗震性能和震后可更换能力,以耗能梁段长度和楼板组合效应为研究变量,设计3个2/3缩尺的单层单跨SFTS-RSLs子结构平面试件。框筒柱和裙梁采用Q460高强钢,耗能梁段采用低屈服点钢LYP225。通过水平低周往复加载试验对结构的破坏模式、刚度、承载力、耗能能力、延性、可更换能力以及耗能梁段塑性转角与超强系数进行研究。试验结果表明:试件滞回曲线饱满,延性高,具有稳定、良好的耗能能力和塑性变形能力;耗能梁段的破坏模式主要为翼缘严重屈曲且翼缘 端板焊缝撕裂或腹板撕裂;耗能梁段超强系数均值约为1.95,极限塑性转角超过0.18rad,远大于AISC 341-16规定的塑性转角限值0.08rad;楼板组合效应对结构承载力、耗能能力、延性、可更换能力、耗能梁段塑性转角和超强系数影响不大,对结构的弹性刚度影响显著;减小耗能梁段长度能够提高结构承载力、抗侧刚度、耗能梁段塑性转角和超强系数,但会降低结构的耗能能力和延性;加载过程中,结构的塑性变形与损伤集中在耗能梁段,框筒柱和裙梁处于弹性状态,有利于结构震后修复与正常使用功能的快速恢复。  相似文献   
10.
地震作用下,传统钢框筒结构难以实现强柱弱梁的设计理念,大震下柱端往往先于梁端出现塑性铰。针对这一问题提出了含可更换剪切型耗能梁段的钢框筒结构,即在裙梁中设置可更换的剪切型耗能梁段,大震作用下结构利用剪切型耗能梁段良好的弹塑性变形能力进行耗能,其余构件仍处于弹性状态或部分发展塑性。设计了一组算例结构,包括传统钢框筒结构和含可更换剪切型耗能梁段的钢框筒结构,采用SAP2000有限元分析软件对算例结构进行了弹性和弹塑性地震反应分析,对比了传统钢框筒结构和不同耗能梁段布置形式的含可更换剪切型耗能梁段的钢框筒结构在多遇地震、罕遇地震和极罕遇地震作用下的抗震性能和破坏模式。结果表明:在裙梁中设置剪切型耗能梁段对结构整体刚度的影响较小,含可更换剪切型耗能梁段的钢框筒结构改变了传统钢框筒结构的耗能机制,主要通过耗能梁段的剪切变形代替裙梁端部塑性铰耗能。罕遇地震作用下耗能梁段全部进入塑性耗能,震后仅需替换损伤严重的耗能梁段即可快速恢复结构的使用功能。极罕遇地震作用下,传统钢框筒结构达到极限状态,而含可更换剪切型耗能梁段的钢框筒结构的耗能梁段进一步发展塑性,其余构件保持弹性,结构具有足够的安全储备。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号