首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
综合类   1篇
金属工艺   3篇
矿业工程   1篇
  2020年   1篇
  2019年   4篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
研究了稀土Y变质(0%~0.8%,质量分数)对Mg-5Sn-1Si合金显微组织的影响。通过XRD和SEM分析了该合金的组织和相组成。结果表明,受成分过冷的作用,适量Y能有效细化铸态组织。随着Y含量从0.2%增加到0.8%,生长抑制因子GRF值从Mg-5Sn-1Si-0.2Y的16.94增大到Mg-5Sn-1Si-0.8Y的17.96,枝晶臂间距平均尺寸从不含Y的Mg-5Sn-1Si合金的23.7μm减小至Mg-5Sn-1Si-0.8Y合金的12.5μm,减小了约47%。由于Y元素在Mg_2Si表面的偏聚,Mg-Y二元相或是Mg-Si-Y三元相将在Mg_2Si和α-Mg前沿析出,抑制了共晶Mg_2Si的异向生长,使复杂汉字状的Mg_2Si转变为棒状组织。当Y含量达到0.8%时,Y元素对Mg_2Si变质效果最佳。通过XRD和SEM分析了该合金的相组成,合金由α-Mg基体、Mg_2Sn、Mg_2Si和少量的Mg_(24)Y_5和Mg Si Y组成。使用CASTEP软件包基于第一性原理,计算了三种Mg Si Y晶胞结构的结合能E_(coh),计算结果与Mg_2Si结合能的对比,证实了Mg Si Y存在的可能性。  相似文献   
2.
为研究不同道次的往复挤压对Mg-5Sn-1Si-0.8Y镁合金组织和性能的影响,向Mg-5Sn-1Si合金中添加0.8%Y(质量分数)后,将铸锭挤压成棒材,随后在340℃下进行4、6和8道次的往复挤压,并使用DEFORM-3D对挤压过程进行模拟。结果表明,添加Y元素后,共晶Mg_2Si明显细化,由复杂的汉字状转变为短棒状。经挤压破碎后,共晶Mg_2Si粒化效果明显,但球化效果不及Mg_2Sn。在往复挤压过程中,受动态和静态再结晶影响,晶粒逐渐细化,平均晶粒尺寸由正挤压态的40.16μm减小到8道次往复挤压的7.68μm,延伸率增幅明显,由6.88%增加至10.6%,但受织构弱化影响,抗拉强度由197MPa下降至182MPa。断口形貌表明,随挤压道次增加,韧窝变得小而多,材料韧性明显增加。往复挤压过程中的不均匀变形使得晶粒大小不一,影响材料力学性能。  相似文献   
3.
通过DEFORM-3D对不同的模具进行往复挤压变形有限元模拟,研究了不同挤压比λ、挤压角度θ和变形区长度l对AZ31镁合金等效应变分布的影响。结果表明:模具挤压角度在45°~60°时,有助于改善等效应变分布的均匀性,挤压角度由30°增大至60°时,线性拟合后斜率从0. 85降至0. 53。减小挤压比λ和变形区长度l对改善等效应变分布均匀性效果显著,挤压比λ由4. 69减小至2. 64时,线性拟合后斜率从0. 53降低至0. 2。变形区长度l由5. 4 mm变为圆弧过渡(圆角半径r=5 mm),等效应变不均匀程度参数Ci从0. 4减小至0. 258。当模具挤压角度为45°,颈缩区直径为Φ16 mm (λ=2. 64),变形区长度l改为r=5 mm圆弧过渡时,试样等效应变不均匀程度参数Ci=0. 102,在模拟结果中数值最小,表明等效应变分布最均匀。  相似文献   
4.
用真空电弧炉在水冷铜模亚快速凝固条件下制备Ni-(50-x)Al-xSc(at%)合金,用光学显微镜(OM)和扫描电子显微镜(SEM)观察合金组织,用X射线衍射(XRD)和能谱(EDS)分析合金的相组成,结合差式扫描量热法(DSC)分析合金凝固过程,用维氏显微硬度计和纳米压痕仪分别测定合金的硬度和弹性模量,采用两相系统简化模型估算合金整体弹性模量。结果表明,Ni-50Al、Ni-45Al-5Sc、Ni-40Al-10Sc和Ni-35Al-15Sc合金的亚快速凝固组织分别为NiAl、NiAl+AlNi2Sc、NiAl+AlNi2Sc和NiAl+AlNi2Sc+(AlNi2Sc+Ni-16.93Al-21.53Sc)。合金中各相析出的先后顺序为NiAl、AlNi2Sc和(AlNi2Sc+Ni-16.93Al-21.53Sc)。AlNi2Sc生长的Jackson因子α = 0.2,凝固界面是粗糙界面。Sc使初生NiAl相的硬度提升,AlNi2Sc相的硬度大于NiAl相的硬度。Sc使初生NiAl相弹性模量减小,Ni-(50-x)Al-xSc合金的整体弹性模量与NiAl金属间化合物相比有减小。  相似文献   
5.
Mg-6Zn-x Ce(x = 0, 0.6, 1.0, 2.0) alloy ingots with diameter of 50 mm were extruded into bars with diameter of 12 mm at 300 ℃. The microstructures were analyzed by X-ray diffraction, optical microscopy, scanning electron microscopy and transmission electron microscopy, and mechanical properties were tested at room temperature. The results showed that major intermetallic composition in as-cast Mg-6Zn and Mg-6Zn-0.6Ce alloys was Mg_4Zn_7 phase, during extrusion Mg_4Zn_7 phase was dissolved into matrix and then precipitated as MgZn_2. In as-cast and as-extruded Mg-6Zn-1Ce and Mg-6Zn-2Ce alloys the major intermetallic composition was T phase. The microstructure of as-extruded alloy was refined due to complete dynamic recrystallization, the average grain size decreased with increasing Ce content, which were 12.1, 11.7, 11.0 and 10.0 mm, respectively. High density MgZn_2 precipitated in Mg-6Zn and Mg-6Zn-0.6Ce alloys. The broken T phase particles were distributed linearly along extrusion direction. Mg-6Zn-0.6Ce alloy exhibited a high yield strength of 226.3 MPa that was about 24 MPa higher than Mg-6Zn alloy. However, with increasing Ce contents, the strengths were decreased slightly because the effects of precipitation strengthening of MgZn_2 and solid solute strengthening of Zn were weakened though the strengthening effect of T phase was enhanced.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号